MercuryDPM  Alpha
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
HertzianViscoelasticInteraction.cc
Go to the documentation of this file.
1 //Copyright (c) 2013-2014, The MercuryDPM Developers Team. All rights reserved.
2 //For the list of developers, see <http://www.MercuryDPM.org/Team>.
3 //
4 //Redistribution and use in source and binary forms, with or without
5 //modification, are permitted provided that the following conditions are met:
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above copyright
9 // notice, this list of conditions and the following disclaimer in the
10 // documentation and/or other materials provided with the distribution.
11 // * Neither the name MercuryDPM nor the
12 // names of its contributors may be used to endorse or promote products
13 // derived from this software without specific prior written permission.
14 //
15 //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16 //ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 //WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 //DISCLAIMED. IN NO EVENT SHALL THE MERCURYDPM DEVELOPERS TEAM BE LIABLE FOR ANY
19 //DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 //(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21 //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22 //ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 //(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 //SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 
26 
29 #include "BaseInteractable.h"
30 #include "InteractionHandler.h"
31 #include <iomanip>
32 #include <fstream>
39  : BaseInteraction(P, I, timeStamp)
40 {
41 #ifdef DEBUG_CONSTRUCTOR
42  std::cout<<"HertzianViscoelasticInteraction::HertzianViscoelasticInteraction() finished"<<std::endl;
43 #endif
44 }
49  : BaseInteraction(p)
50 {
51 #ifdef DEBUG_CONSTRUCTOR
52  std::cout<<"HertzianViscoelasticInteraction::HertzianViscoelasticInteraction(const HertzianViscoelasticInteraction& p) finished"<<std::endl;
53 #endif
54 }
59 {
60 #ifdef DEBUG_DESTRUCTOR
61  std::cout<<"HertzianViscoelasticInteraction::~HertzianViscoelasticInteraction() finished"<<std::endl;
62 #endif
63 }
64 
68 void HertzianViscoelasticInteraction::write(std::ostream& os) const
69  {
71 }
76 {
78 }
83 {
84  return "HertzianViscoelastic";
85 }
90 {
91  // This function is called for all particles within interactionRadius distance.
92 
93  // This has to be outside the loop because it is needed for the other forces
94  // Compute the relative velocity vector of particle P w.r.t. I
95  setRelativeVelocity(getP()->getVelocityAtContact(getContactPoint()) - getI()->getVelocityAtContact(getContactPoint()));
96  // Compute the projection of vrel onto the normal (can be negative)
98 
99  if (getOverlap() > 0) //if contact forces
100  {
102 
103  Mdouble stiffness = 4. / 3. * species->getElasticModulus() * std::sqrt(getEffectiveRadius() * getOverlap());
104 
105  //calculating the current normal force
106  //dissipation is computed such that the restitution is constant
107  Mdouble normalForce = stiffness * getOverlap() - species->getDissipation() * getNormalRelativeVelocity();
108 
109  //setting the normal force parameter in the base interaction class so that it can be accessed
110  //by other classes...
111  setAbsoluteNormalForce(std::abs(normalForce)); //used for further force calculations;
112  setForce(getNormal() * normalForce);
114  setTorque(Vec3D(0.0, 0.0, 0.0));
115  }
116  else
117  {
119  setForce(Vec3D(0.0, 0.0, 0.0));
120  setTorque(Vec3D(0.0, 0.0, 0.0));
121  }
122 }
127 {
128  if (getOverlap() > 0) {
129  return 8. / 15. * getSpecies()->getElasticModulus() * std::sqrt(2.0*getEffectiveRadius() * getOverlap())* mathsFunc::square(getOverlap());
130  } else {
131  return 0.0;
132  }
134 }
139 {
140  return dynamic_cast<const HertzianViscoelasticNormalSpecies*>(getBaseSpecies());
141 }
142 
145  const Mdouble effectiveDiameter = 2.0*getEffectiveRadius();
146  const Mdouble modulus = 4. / 3. * species->getElasticModulus() * std::sqrt(effectiveDiameter);
147  const Mdouble equilibriumOverlap = mathsFunc::square(std::cbrt(adhesiveForce/modulus));
148  return 0.6*adhesiveForce*equilibriumOverlap;//why not 0.4?
149 }
Mdouble getEffectiveRadius() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) ...
const HertzianViscoelasticNormalSpecies * getSpecies() const
Returns a const pointer of type HerztianViscoelasticNormalSpecies (dynamic-cast). ...
Mdouble getElasticModulus() const
Allows the spring constant to be accessed.
std::string getBaseName() const
Returns the name of the interaction.
const Vec3D & getRelativeVelocity() const
Returns a constant reference to a vector of relative velocity.
Computes normal forces for a Herztian visco-elastic interaction.
double Mdouble
void setRelativeVelocity(Vec3D relativeVelocity)
set the relative velocity of the current of the interactions.
void setForce(Vec3D force)
set total force (this is used by the normal force, tangential forces are added use addForce) ...
static Mdouble dot(const Vec3D &a, const Vec3D &b)
Calculates the dot product of two Vec3D: .
Definition: Vector.cc:167
void setNormalRelativeVelocity(Mdouble normalRelativeVelocit)
set the normal component of the relative velocity.
T square(T val)
squares a number
Definition: ExtendedMath.h:91
Stores information about interactions between two interactable objects; often particles but could be ...
HertzianViscoelasticInteraction(BaseInteractable *P, BaseInteractable *I, Mdouble timeStamp)
Constructor.
const Vec3D & getContactPoint() const
Gets constant reference to contact point (vector).
Mdouble getNormalRelativeVelocity() const
Returns a double which is the norm (length) of the relative velocity vector.
const BaseSpecies * getBaseSpecies() const
Return a constant point to BaseSpecies of the interaction.
Mdouble getDissipation() const
Allows the normal dissipation to be accessed.
const Vec3D & getNormal() const
Gets the normal vector between the two interacting objects.
void computeNormalForce()
Computes the amount of normal force due to an Herztian visco-elastic interaction. ...
void setTorque(Vec3D torque)
set the total force (this is used by the normal force, tangential torques are added use addTorque) ...
Mdouble getOverlap() const
Returns a Mdouble with the current overlap between the two interacting objects.
void setAbsoluteNormalForce(Mdouble absoluteNormalForce)
the absolute values of the norm (length) of the normal force
BaseInteractable * getI()
void read(std::istream &is)
Interaction read function, which accepts an std::istream as input.
Mdouble getElasticEnergyAtEquilibrium(Mdouble adhesiveForce) const
void write(std::ostream &os) const
Interaction write function, which accepts an std::ostream as input.
virtual void read(std::istream &is)
Interaction read function, which accepts an std::istream as input.
Defines the basic properties that a interactable object can have.
BaseInteractable * getP()
Returns a pointer to first object involved in the interaction (normally a particle).
Implementation of a 3D vector (by Vitaliy).
Definition: Vector.h:45
HertzianViscoelasticNormalSpecies contains the parameters used to describe a Hertzian normal force (T...
virtual void write(std::ostream &os) const
Interaction print function, which accepts an std::ostream as input.
Mdouble getElasticEnergy() const
Computes and returns the amount of elastic energy stored in the spring.