MercuryDPM  Alpha
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
LinearPlasticViscoelasticInteraction.cc
Go to the documentation of this file.
1  //Copyright (c) 2013-2014, The MercuryDPM Developers Team. All rights reserved.
2 //For the list of developers, see <http://www.MercuryDPM.org/Team>.
3 //
4 //Redistribution and use in source and binary forms, with or without
5 //modification, are permitted provided that the following conditions are met:
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above copyright
9 // notice, this list of conditions and the following disclaimer in the
10 // documentation and/or other materials provided with the distribution.
11 // * Neither the name MercuryDPM nor the
12 // names of its contributors may be used to endorse or promote products
13 // derived from this software without specific prior written permission.
14 //
15 //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16 //ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 //WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 //DISCLAIMED. IN NO EVENT SHALL THE MERCURYDPM DEVELOPERS TEAM BE LIABLE FOR ANY
19 //DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 //(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21 //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22 //ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 //(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 //SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 
26 
28 #include "InteractionHandler.h"
29 #include "Particles/BaseParticle.h"
30 #include <iomanip>
31 #include <fstream>
33 #include <cmath> // std::max
40  : BaseInteraction(P, I, timeStamp)
41 {
42  maxOverlap_=0;
43 #ifdef DEBUG_CONSTRUCTOR
44  std::cout<<"LinearPlasticViscoelasticInteraction::LinearPlasticViscoelasticInteraction() finished"<<std::endl;
45 #endif
46 }
51  : BaseInteraction(p)
52 {
54 #ifdef DEBUG_CONSTRUCTOR
55  std::cout<<"LinearPlasticViscoelasticInteraction::LinearPlasticViscoelasticInteraction(const LinearPlasticViscoelasticInteraction &p finished"<<std::endl;
56 #endif
57 }
62 {
63 #ifdef DEBUG_DESTRUCTOR
64  std::cout<<"LinearPlasticViscoelasticInteraction::~LinearPlasticViscoelasticInteraction() finished"<<std::endl;
65 #endif
66 }
67 
72 void LinearPlasticViscoelasticInteraction::write(std::ostream& os) const
73 {
75  os << " maxOverlap " << maxOverlap_;
76 }
82 {
84  helpers::readOptionalVariable<Mdouble>(is,"maxOverlap",maxOverlap_);
85 }
90 {
91  return "LinearPlasticViscoelastic";
92 }
97 {
98  // Compute the relative velocity vector of particle P w.r.t. I
99  setRelativeVelocity(getP()->getVelocityAtContact(getContactPoint()) - getI()->getVelocityAtContact(getContactPoint()));
100  // Compute the projection of vrel onto the normal (can be negative)
102 
103  if (getOverlap() > 0) //if contact forces
104  {
106 
107  //calculate the overlap above which the max. unloading stiffness becomes active (the 'fluid branch')
108  Mdouble effectiveDiameter = 2.0 * getEffectiveRadius();
109  Mdouble deltaStar = (species->getUnloadingStiffnessMax()
110  / (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()))
111  * species->getPenetrationDepthMax() * effectiveDiameter;
112 
113  //increase max overlap if necessary
114  if (getOverlap()>getMaxOverlap())
115  setMaxOverlap(std::min(deltaStar, getOverlap()));
116 
117  //calculate the unloading stiffness
118  Mdouble unloadingStiffness = species->getLoadingStiffness()
119  + (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()) * (getMaxOverlap() / deltaStar);
120 
121  //calculate the overlap where the force is zero
122  Mdouble equilibriumOverlap = (unloadingStiffness - species->getLoadingStiffness()) / unloadingStiffness * maxOverlap_;
123 
124  //compute elastic force
125  Mdouble normalForce = unloadingStiffness * (getOverlap() - equilibriumOverlap);
126 
127  //decrease max overlap if necessary
128  Mdouble cohesiveForce = -species->getCohesionStiffness() * getOverlap();
129  if (normalForce < cohesiveForce) {
130  setMaxOverlap((unloadingStiffness + species->getCohesionStiffness())
131  / (unloadingStiffness - species->getLoadingStiffness()) * getOverlap());
132  //only necessary because the timeStep is finite:
133  normalForce = cohesiveForce;
134  }
135 
136  //add dissipative force
137  normalForce -= species->getDissipation() * getNormalRelativeVelocity();
138 
139  setAbsoluteNormalForce(std::abs(normalForce)); //used for further corce calculations;
140  setForce(getNormal() * normalForce);
141  setTorque(Vec3D(0.0, 0.0, 0.0));
142  }
143  else
144  {
146  setForce(Vec3D(0.0, 0.0, 0.0));
147  setTorque(Vec3D(0.0, 0.0, 0.0));
148  }
149 }
154 {
156 }
161 {
162  if (getOverlap() > 0)
164  else
165  return 0.0;
167 }
172 {
173  return dynamic_cast<const LinearPlasticViscoelasticNormalSpecies*>(getBaseSpecies());
174 }
179 {
180  return maxOverlap_;
181 }
186 {
187  maxOverlap_ = maxOverlap;
188 }
193 {
195  Mdouble effectiveDiameter = 2.0*getEffectiveRadius();
196  Mdouble deltaMaxFluid = species->getPenetrationDepthMax() * effectiveDiameter / (1.0-species->getLoadingStiffness()/species->getUnloadingStiffnessMax());
197  if (getOverlap() > deltaMaxFluid)
198  return species->getUnloadingStiffnessMax();
199  else
200  return species->getLoadingStiffness() + (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()) * getMaxOverlap()/deltaMaxFluid;
201 }
202 
virtual std::string getBaseName() const
Returns the name of the interaction.
Mdouble getEffectiveRadius() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) ...
virtual void read(std::istream &is)
Interaction read function, which accepts an std::istream as input.
void computeLinearPlasticViscoelasticForce()
Creates a copy of an object of this class. (Deep copy)
Mdouble getUnloadingStiffnessMax() const
Returns the maximum unloading stiffness of the linear plastic-viscoelastic normal force...
const Vec3D & getRelativeVelocity() const
Returns a constant reference to a vector of relative velocity.
double Mdouble
void setRelativeVelocity(Vec3D relativeVelocity)
set the relative velocity of the current of the interactions.
void setForce(Vec3D force)
set total force (this is used by the normal force, tangential forces are added use addForce) ...
static Mdouble dot(const Vec3D &a, const Vec3D &b)
Calculates the dot product of two Vec3D: .
Definition: Vector.cc:167
void setNormalRelativeVelocity(Mdouble normalRelativeVelocit)
set the normal component of the relative velocity.
T square(T val)
squares a number
Definition: ExtendedMath.h:91
Stores information about interactions between two interactable objects; often particles but could be ...
void computeNormalForce()
Calls computeLinearPlasticViscoElasticForce().
Mdouble getCohesionStiffness() const
Returns the cohesive stiffness of the linear plastic-viscoelastic normal force.
const Vec3D & getContactPoint() const
Gets constant reference to contact point (vector).
Mdouble getNormalRelativeVelocity() const
Returns a double which is the norm (length) of the relative velocity vector.
LinearPlasticViscoelasticInteraction(BaseInteractable *P, BaseInteractable *I, Mdouble timeStamp)
Constructor.
const BaseSpecies * getBaseSpecies() const
Return a constant point to BaseSpecies of the interaction.
const Vec3D & getNormal() const
Gets the normal vector between the two interacting objects.
void setTorque(Vec3D torque)
set the total force (this is used by the normal force, tangential torques are added use addTorque) ...
Mdouble getDissipation() const
Allows the normal dissipation to be accessed.
Mdouble getOverlap() const
Returns a Mdouble with the current overlap between the two interacting objects.
void setAbsoluteNormalForce(Mdouble absoluteNormalForce)
the absolute values of the norm (length) of the normal force
Mdouble getElasticEnergy() const
Computes and returns the amount of elastic energy stored in the spring.
BaseInteractable * getI()
const LinearPlasticViscoelasticNormalSpecies * getSpecies() const
virtual void read(std::istream &is)
Interaction read function, which accepts an std::istream as input.
Defines the basic properties that a interactable object can have.
LinearPlasticViscoelasticNormalSpecies contains the parameters used to describe a plastic-cohesive no...
BaseInteractable * getP()
Returns a pointer to first object involved in the interaction (normally a particle).
Implementation of a 3D vector (by Vitaliy).
Definition: Vector.h:45
Mdouble getPenetrationDepthMax() const
Returns the maximum penetration depth of the linear plastic-viscoelastic normal force.
virtual void write(std::ostream &os) const
Interaction print function, which accepts an std::ostream as input.
Computes normal forces in case of a linear plastic visco-elastic interaction.
virtual void write(std::ostream &os) const
Interaction write function, which accepts an std::ostream as input.
Mdouble getLoadingStiffness() const
Returns the loading stiffness of the linear plastic-viscoelastic normal force.