26 #ifndef BASEINTERACTION_H
27 #define BASEINTERACTION_H
74 virtual void read(std::istream& is);
79 virtual void write(std::ostream& os)
const;
89 virtual std::string
getName()
const;
const Vec3D & getForce() const
Gets the current force (vector) between the two interacting objects.
Mdouble getEffectiveRadius() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) ...
void setNormal(Vec3D normal)
Sets the normal vector between the two interacting objects.
void copySwitchPointer(const BaseInteractable *original, BaseInteractable *ghost) const
This copies the interactions of the original particle and replaces the original with the ghost copy...
BaseSpecies is the class from which all other species are derived.
InteractionHandler * getHandler() const
Gets a point to the interaction handlers to which this interaction belongs.
void setOverlap(Mdouble overlap)
Set the overlap between the two interacting object.
virtual BaseInteraction * copy() const =0
Makes a copy of the interaction and returns a pointer to the copy.
void setI(BaseInteractable *I)
Sets the second object involved in the interaction (often particle or wall).
It is an abstract base class due to the purely virtual functions declared below. Even if the function...
const Vec3D & getRelativeVelocity() const
Returns a constant reference to a vector of relative velocity.
virtual void reverseHistory()
When periodic particles some interaction need certain history properties reversing. This is the function for that.
void setRelativeVelocity(Vec3D relativeVelocity)
set the relative velocity of the current of the interactions.
void setContactPoint(Vec3D contactPoint)
Set the location of the contact point between the two interacting objects.
void addTorque(Vec3D torque)
void removeFromHandler()
Removes this interaction from its interaction hander.
void setForce(Vec3D force)
set total force (this is used by the normal force, tangential forces are added use addForce) ...
void setNormalRelativeVelocity(Mdouble normalRelativeVelocit)
set the normal component of the relative velocity.
void setDistance(Mdouble distance)
Sets the interaction distance between the two interacting objects.
Mdouble getTimeStamp() const
Returns an Mdouble which is the time stamp of the interaction.
void setSpecies(BaseSpecies *species)
Set the Species of the interaction; note this can either be a Species or MixedSpecies.
void gatherContactStatistics()
Stores information about interactions between two interactable objects; often particles but could be ...
const Vec3D & getContactPoint() const
Gets constant reference to contact point (vector).
Mdouble getNormalRelativeVelocity() const
Returns a double which is the norm (length) of the relative velocity vector.
virtual ~BaseInteraction()
The default destructor.
BaseInteraction(BaseInteractable *P, BaseInteractable *I, Mdouble timeStamp)
A constructor takes the BaseInteractable objects which are interacting (come into contact) and time t...
void setTimeStamp(Mdouble timeStamp)
Updates the time step of the interacting. Note, timesteps used to find completed interactions.
virtual void rotateHistory(Matrix3D &rotationMatrix)
When periodic particles are used, some interactions need certain history properties rotated (e...
const BaseSpecies * getBaseSpecies() const
Return a constant point to BaseSpecies of the interaction.
Container to store Interaction objects.
const Vec3D & getNormal() const
Gets the normal vector between the two interacting objects.
void setHandler(InteractionHandler *handler)
Sets the pointer to the interaction hander which is storing this interaction.
void setP(BaseInteractable *P)
Sets the first object involved in the interaction (normally a particle).
void setTorque(Vec3D torque)
set the total force (this is used by the normal force, tangential torques are added use addTorque) ...
virtual const Vec3D getTangentialForce() const
Mdouble getOverlap() const
Returns a Mdouble with the current overlap between the two interacting objects.
void addForce(Vec3D force)
add an force increment to the total force.
void setAbsoluteNormalForce(Mdouble absoluteNormalForce)
the absolute values of the norm (length) of the normal force
Mdouble normalRelativeVelocity_
BaseInteractable * getI()
Mdouble getDistance() const
Returns an Mdouble which is the norm (length) of distance vector.
virtual void integrate(Mdouble timeStep)
integrates variables of the interaction which need to be integrate e.g. the tangential overlap...
virtual std::string getName() const
Virtual function which allows interactions to be named.
const Vec3D & getTorque() const
Gets the current torque (vector) between the two interacting objects.
virtual void read(std::istream &is)
Interaction read function, which accepts an std::istream as input.
Defines the basic properties that a interactable object can have.
virtual Mdouble getElasticEnergy() const
Returns a Mdouble which is the current about of Elastic energy in the interaction.
Mdouble absoluteNormalForce_
virtual void computeForce()
Virtual function that contains the force law between the two objects interacting. ...
BaseInteractable * getP()
Returns a pointer to first object involved in the interaction (normally a particle).
Implementation of a 3D matrix.
Implementation of a 3D vector (by Vitaliy).
virtual Mdouble getTangentialOverlap() const
get the length of the current tangential overlap
virtual void write(std::ostream &os) const
Interaction print function, which accepts an std::ostream as input.
Mdouble getEffectiveCorrectedRadius()
Returns a Mdouble to the effective radius corrected for the overlaps of the particles.
void writeToFStat(std::ostream &os) const
Writes forces data to the FStat file.
InteractionHandler * handler_
Mdouble getAbsoluteNormalForce() const
Returns the absolute value of the norm (length) of the Normal force vector.