MercuryDPM  Trunk
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
SinterLinInteraction Class Reference

#include <SinterLinInteraction.h>

+ Inheritance diagram for SinterLinInteraction:

Public Types

typedef SinterLinNormalSpecies SpeciesType
 An alias for the corresponding species. More...
 

Public Member Functions

 SinterLinInteraction (BaseInteractable *P, BaseInteractable *I, unsigned timeStamp)
 Constructor. More...
 
 SinterLinInteraction (const SinterLinInteraction &p)
 Copy constructor. More...
 
 SinterLinInteraction ()
 
 ~SinterLinInteraction () override
 Destructor. More...
 
void computeNormalForce ()
 Creates a copy of an object of this class. (Deep copy) More...
 
void read (std::istream &is) override
 Interaction read function, which accepts an std::istream as input. More...
 
void write (std::ostream &os) const override
 Interaction write function, which accepts an std::ostream as input. More...
 
virtual std::string getBaseName () const
 Returns the name of the interaction. More...
 
Mdouble getElasticEnergy () const override
 Computes and returns the amount of elastic energy stored in the spring. More...
 
Mdouble getMaxOverlap () const
 
Mdouble getPlasticOverlap () const
 
void setMaxOverlap (Mdouble maxOverlap)
 
void setPlasticOverlap (Mdouble plasticOverlap)
 
Mdouble getUnloadingStiffness () const
 
const SinterLinNormalSpeciesgetSpecies () const
 Returns a const pointer of type LinearViscoelasticNormalSpecies*. More...
 
- Public Member Functions inherited from BaseInteraction
 BaseInteraction (BaseInteractable *P, BaseInteractable *I, unsigned timeStamp)
 A constructor takes the BaseInteractable objects which are interacting (come into contact) and time the interaction starts. More...
 
 BaseInteraction ()
 
 BaseInteraction (const BaseInteraction &p)
 Copy constructor. More...
 
 ~BaseInteraction () override
 The destructor. More...
 
virtual void actionsOnErase ()
 If an interaction needs to do something before it gets erased, add it here. E.g. Liquid bridges rupture at the end of their lifetime, and the liquid bridge volume has to be redistributed. The reason this action is not done in the destructor is that this action should not be taken when erasing ghost interactions. More...
 
virtual void computeForce ()
 Virtual function that contains the force law between the two objects interacting. More...
 
void writeToFStat (std::ostream &os, Mdouble time) const
 Writes forces data to the FStat file. More...
 
std::string getName () const override
 Virtual function which allows interactions to be named. More...
 
void setDistance (Mdouble distance)
 Sets the interaction distance between the two interacting objects. More...
 
void setNormal (Vec3D normal)
 Sets the normal vector between the two interacting objects. More...
 
void setOverlap (Mdouble overlap)
 Set the overlap between the two interacting object. More...
 
void setContactPoint (Vec3D contactPoint)
 Set the location of the contact point between the two interacting objects. More...
 
void setTimeStamp (unsigned timeStamp)
 Updates the time step of the interacting. Note, time steps used to find completed interactions. More...
 
void setSpecies (const BaseSpecies *species)
 Set the Species of the interaction; note this can either be a Species or MixedSpecies. More...
 
void setP (BaseInteractable *P)
 Sets the first object involved in the interaction (normally a particle). More...
 
void setI (BaseInteractable *I)
 Sets the second object involved in the interaction (often particle or wall). More...
 
void importP (BaseInteractable *P)
 Sets the first object involved in the interaction (normally a particle). More...
 
void importI (BaseInteractable *I)
 Sets the second object involved in the interaction (often particle or wall). More...
 
Vec3D getIP () const
 
Vec3D getIC () const
 
Vec3D getCP () const
 
void setLagrangeMultiplier (Mdouble multiplier)
 
Mdouble getLagrangeMultiplier ()
 
void setHandler (InteractionHandler *handler)
 Sets the pointer to the interaction hander which is storing this interaction. More...
 
InteractionHandlergetHandler () const
 Gets a point to the interaction handlers to which this interaction belongs. More...
 
const Vec3DgetForce () const
 Gets the current force (vector) between the two interacting objects. More...
 
const Vec3DgetTorque () const
 Gets the current torque (vector) between the two interacting objects. More...
 
const Vec3DgetNormal () const
 Gets the normal vector between the two interacting objects. More...
 
const Vec3DgetContactPoint () const
 Gets constant reference to contact point (vector). More...
 
Mdouble getOverlap () const
 Returns a Mdouble with the current overlap between the two interacting objects. More...
 
Mdouble getContactRadius () const
 Returns a Mdouble with the current contact between the two interacting objects. More...
 
void removeFromHandler ()
 Removes this interaction from its interaction hander. More...
 
void copySwitchPointer (const BaseInteractable *original, BaseInteractable *ghost) const
 This copies the interactions of the original particle and replaces the original with the ghost copy. More...
 
void gatherContactStatistics ()
 
BaseInteractablegetP ()
 Returns a pointer to first object involved in the interaction (normally a particle). More...
 
BaseInteractablegetI ()
 Returns a pointer to the second object involved in the interaction (often a wall or a particle). More...
 
const BaseInteractablegetP () const
 Returns a constant pointer to the first object involved in the interaction. More...
 
const BaseInteractablegetI () const
 Returns a constant pointer to the second object involved in the interaction. More...
 
Mdouble getTimeStamp () const
 Returns an Mdouble which is the time stamp of the interaction. More...
 
virtual void integrate (Mdouble timeStep)
 integrates variables of the interaction which need to be integrate e.g. the tangential overlap. More...
 
virtual Mdouble getTangentialOverlap () const
 get the length of the current tangential overlap More...
 
Mdouble getDistance () const
 Returns an Mdouble which is the norm (length) of distance vector. More...
 
const Vec3DgetRelativeVelocity () const
 Returns a constant reference to a vector of relative velocity. More...
 
Mdouble getNormalRelativeVelocity () const
 Returns a double which is the norm (length) of the relative velocity vector. More...
 
Mdouble getAbsoluteNormalForce () const
 Returns the absolute value of the norm (length) of the Normal force vector. More...
 
virtual BaseInteractioncopy () const =0
 Makes a copy of the interaction and returns a pointer to the copy. More...
 
void setFStatData (std::fstream &fstat, BaseParticle *P, BaseWall *I)
 
void setFStatData (std::fstream &fstat, BaseParticle *P, BaseParticle *I)
 
unsigned int getMultiContactIdentifier () const
 
void setMultiContactIdentifier (unsigned int multiContactIdentifier_)
 
virtual void rotateHistory (Matrix3D &rotationMatrix)
 When periodic particles are used, some interactions need certain history properties rotated (e.g. tangential springs). This is the function for that. More...
 
virtual void actionsAfterTimeStep ()
 
virtual unsigned getNumberOfFieldsVTK () const
 
virtual std::string getTypeVTK (unsigned i) const
 
virtual std::string getNameVTK (unsigned i) const
 
virtual std::vector< MdoublegetFieldVTK (unsigned i) const
 
void setForce (Vec3D force)
 set total force (this is used by the normal force, tangential forces are added use addForce) More...
 
const BaseSpeciesgetBaseSpecies () const
 Return a constant point to BaseSpecies of the interaction. More...
 
virtual void createMPIType ()
 
virtual void * createMPIInteractionDataArray (unsigned int numberOfInteractions) const
 
virtual void deleteMPIInteractionDataArray (void *dataArray)
 
virtual void getMPIInteraction (void *historyDataArray, unsigned int index) const
 copies the history interactions into the data array More...
 
virtual void getInteractionDetails (void *interactionDataArray, unsigned int index, unsigned int &identificationP, unsigned int &identificationI, bool &isWallInteraction, unsigned &timeStamp)
 
virtual void setMPIInteraction (void *interactionDataArray, unsigned int index, bool resetPointers)
 
void setBasicMPIInteractionValues (int P, int I, unsigned timeStamp, Vec3D force, Vec3D torque, bool isWallInteraction, bool resetPointers)
 
void setIdentificationP (unsigned int identification)
 
void setIdentificationI (int identification)
 
void setWallInteraction (bool flag)
 
unsigned int getIdentificationP ()
 
int getIdentificationI ()
 
bool isWallInteraction ()
 
virtual bool isBonded () const
 
- Public Member Functions inherited from BaseObject
 BaseObject ()=default
 Default constructor. More...
 
 BaseObject (const BaseObject &p)=default
 Copy constructor, copies all the objects BaseObject contains. More...
 
virtual ~BaseObject ()=default
 virtual destructor More...
 
virtual void moveInHandler (unsigned int index)
 Except that it is virtual, it does the same thing as setIndex() does. More...
 
void setIndex (unsigned int index)
 Allows one to assign an index to an object in the handler/container. More...
 
void setId (unsigned long id)
 Assigns a unique identifier to each object in the handler (container) which remains constant even after the object is deleted from the container/handler. More...
 
unsigned int getIndex () const
 Returns the index of the object in the handler. More...
 
unsigned int getId () const
 Returns the unique identifier of any particular object. More...
 
void setGroupId (unsigned groupId)
 
unsigned getGroupId () const
 

Private Attributes

Mdouble maxOverlap_
 
Mdouble plasticOverlap_
 

Additional Inherited Members

- Protected Member Functions inherited from BaseInteraction
virtual const Vec3D getTangentialForce () const
 
Mdouble getEffectiveRadius () const
 Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) More...
 
Mdouble getEffectiveMass () const
 Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) More...
 
void addForce (Vec3D force)
 add an force increment to the total force. More...
 
void addTorque (Vec3D torque)
 
void setTorque (Vec3D torque)
 set the total force (this is used by the normal force, tangential torques are added use addTorque) More...
 
void setRelativeVelocity (Vec3D relativeVelocity)
 set the relative velocity of the current of the interactions. More...
 
void setNormalRelativeVelocity (Mdouble normalRelativeVelocit)
 set the normal component of the relative velocity. More...
 
void setAbsoluteNormalForce (Mdouble absoluteNormalForce)
 the absolute values of the norm (length) of the normal force More...
 
virtual Mdouble getElasticEnergyAtEquilibrium (Mdouble adhesiveForce) const
 
virtual void reverseHistory ()
 When periodic particles some interaction need certain history properties reversing. This is the function for that. More...
 
void writeInteraction (std::ostream &os, bool created) const
 Writes information about a interaction to the interaction file. More...
 

Detailed Description

Definition at line 40 of file SinterLinInteraction.h.

Member Typedef Documentation

An alias for the corresponding species.

Definition at line 46 of file SinterLinInteraction.h.

Constructor & Destructor Documentation

SinterLinInteraction::SinterLinInteraction ( BaseInteractable P,
BaseInteractable I,
unsigned  timeStamp 
)

Constructor.

Parameters
[in]P
[in]I
[in]timeStamp

Definition at line 40 of file SinterLinInteraction.cc.

References plasticOverlap_.

42  : BaseInteraction(P, I, timeStamp)
43 {
44  plasticOverlap_ = 0;
45 #ifdef DEBUG_CONSTRUCTOR
46  std::cout<<"LinearPlasticViscoelasticInteraction::LinearPlasticViscoelasticInteraction() finished"<<std::endl;
47 #endif
48 }
SinterLinInteraction::SinterLinInteraction ( const SinterLinInteraction p)

Copy constructor.

Parameters
[in]p

Definition at line 63 of file SinterLinInteraction.cc.

References plasticOverlap_.

65  : BaseInteraction(p)
66 {
68 #ifdef DEBUG_CONSTRUCTOR
69  std::cout<<"LinearPlasticViscoelasticInteraction::LinearPlasticViscoelasticInteraction(const LinearPlasticViscoelasticInteraction &p finished"<<std::endl;
70 #endif
71 }
SinterLinInteraction::SinterLinInteraction ( )
Todo:
: MX add to MPI

Definition at line 51 of file SinterLinInteraction.cc.

References plasticOverlap_.

52  : BaseInteraction()
53 {
54  plasticOverlap_ = 0;
55 #ifdef DEBUG_CONSTRUCTOR
56  std::cout<<"LinearPlasticViscoelasticInteraction::LinearPlasticViscoelasticInteraction() finished"<<std::endl;
57 #endif
58 }
SinterLinInteraction::~SinterLinInteraction ( )
override

Destructor.

Definition at line 76 of file SinterLinInteraction.cc.

77 {
78 #ifdef DEBUG_DESTRUCTOR
79  std::cout<<"SinterLinInteraction::~SinterLinInteraction() finished"<<std::endl;
80 #endif
81 }

Member Function Documentation

void SinterLinInteraction::computeNormalForce ( )

Creates a copy of an object of this class. (Deep copy)

Computes the normal forces due to linear plastic visco elastic interaction.

Definition at line 116 of file SinterLinInteraction.cc.

References mathsFunc::cos(), Vec3D::dot(), FRENKEL, SinterLinNormalSpecies::getCohesionStiffness(), SinterLinNormalSpecies::getComplianceZero(), BaseInteraction::getContactPoint(), BaseInteraction::getContactRadius(), SinterLinNormalSpecies::getDissipation(), BaseHandler< T >::getDPMBase(), BaseInteraction::getEffectiveRadius(), SinterLinNormalSpecies::getFluidity(), BaseInteraction::getHandler(), BaseInteraction::getI(), SinterLinNormalSpecies::getLoadingStiffness(), BaseInteraction::getNormal(), BaseInteraction::getNormalRelativeVelocity(), BaseInteraction::getOverlap(), BaseInteraction::getP(), SinterLinNormalSpecies::getPenetrationDepthMax(), BaseInteraction::getRelativeVelocity(), SinterLinNormalSpecies::getSeparationDis(), SinterLinNormalSpecies::getSinterAdhesion(), SinterLinNormalSpecies::getSinterRate(), SinterLinNormalSpecies::getSinterType(), getSpecies(), SinterLinNormalSpecies::getSurfTension(), DPMBase::getTimeStep(), SinterLinNormalSpecies::getUnloadingStiffnessMax(), constants::pi, plasticOverlap_, BaseInteraction::setAbsoluteNormalForce(), BaseInteraction::setForce(), BaseInteraction::setNormalRelativeVelocity(), BaseInteraction::setRelativeVelocity(), BaseInteraction::setTorque(), mathsFunc::sin(), mathsFunc::tan(), and VISCOELASTIC_CONTACT.

117 {
118 
119  // Compute the relative velocity vector of particle P w.r.t. I
121  getP()->getVelocityAtContact(getContactPoint()) - getI()->getVelocityAtContact(getContactPoint()));
122  // Compute the projection of vrel onto the normal (can be negative)
124 
125  if (getOverlap() > 0) //if contact forces
126  {
127  const SinterLinNormalSpecies* species = getSpecies();
128 
129  // calculate the effective diameter, equal to the radius for two equal-sized particles
130  const Mdouble effectiveDiameter = 2.0 * getEffectiveRadius();
131 
132  //[1] Compute delta fluid of equilibrium. In this model, it is the same than delta*
133  const Mdouble d_fluid_0 = (species->getUnloadingStiffnessMax()
134  / (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()))
135  * species->getPenetrationDepthMax() * effectiveDiameter;
136 
137  //[2] Compute the rate d(k2/k1)/d(delta0). To obtain this parameter, the linear relationship
138  //between unloading stiffness and maximum overlap is used.
139  const Mdouble dk = (species->getUnloadingStiffnessMax()/species->getLoadingStiffness() - 1.0)*(1.0/d_fluid_0);
140 
141  //Increase max overlap if necessary
142  //Here, two relationships are used. The linear relationship between unloadingstiffness max and
143  // the equilibrium overlap based on the unloading stiffness.
144  //k2 = k1*(1+dk*d), k1*d = k2*(d-d0)
145  //k1*d = k1*(1 + dk*d)*(d-d0)
146  //d = d - d0 +dk*d^2 -dk*d*d0
147  //dk*d^2 = dk *d * d0 + d0
148  //dk*d^2 = (dk*d + 1)*d0
149  //dkd^2/(dk*d + 1) = d0
150  //d0 = d/(1 + 1/(dk*d))
151 
152  //[3] Compute the equilibirum overlap is:
153  const Mdouble d0 = getOverlap()/(1.0 + 1.0/(dk*getOverlap()));
154 
155  const Mdouble minPlasticOverlap = std::min(d0,d_fluid_0);
156 
157  //[4] Determine the plastic overlap
158  plasticOverlap_ = std::max(minPlasticOverlap,plasticOverlap_);
159 
160  //[5] Compute the unloading Stiffness \hat{k2}.
161  const Mdouble unloadingStiffness = species->getLoadingStiffness() * (1.0 + dk * plasticOverlap_);
162 
163  //[6] Compute the elastic force
164  Mdouble normalForce = unloadingStiffness * (getOverlap() - plasticOverlap_);
165 
166  //[7] Add cohesive force (distinct from sinteirng)
167  //Decrease plastic overlap if necessary
168  Mdouble nonSinterAdhesiveForce = -species->getCohesionStiffness() * getOverlap();
169 
170  if (normalForce < nonSinterAdhesiveForce)
171  {
172  plasticOverlap_ = (1.0 + species->getCohesionStiffness() / unloadingStiffness) * getOverlap();
173  normalForce = nonSinterAdhesiveForce;
174  }
175 
176  //[[8] Add dissipative force
177  normalForce -= species->getDissipation() * getNormalRelativeVelocity();
178 
179  //[9] Sintering effect as adhesive force:
180  Mdouble adhesiveForce = species->getSinterAdhesion() * effectiveDiameter;
181 // Mdouble adhesiveForce = species->getSinterAdhesion();
182 
183  //[10] now set the interaction force equal to this normal force (friction and adhesive forces will be added later)
184  setForce(getNormal() * ((normalForce - adhesiveForce)));
185  setTorque(Vec3D(0.0, 0.0, 0.0));
186  //used for tangential force calculations; don't add adhesive force components
187  setAbsoluteNormalForce(std::abs(normalForce));
188 
189  //[11] Checking the overlap to change sintering model
190  //Before this point, the material is unrelaxed, and the contact radious is given by the JKR theory.
191  //Ref: The role of viscoelastic adhesive contact in the sintering of polymeric particles
192  //Author: Y.Y Lin et al.
193  const Mdouble baseNum = (9.0/2.0)*pi*species->getComplianceZero()*species->getSurfTension()/(getEffectiveRadius());
194  const Mdouble a0_R = std::pow(2.0*baseNum,1.0/3.0);
195 
196  const Mdouble realOverlap = std::sqrt(getOverlap()/effectiveDiameter);
197 
198  DPMBase* dpmBase = getHandler()->getDPMBase();
199  Mdouble rateOverlap;
200  Mdouble rateOverlap2;
201 
202  if (species->getSinterType() == SINTER_APPROACH::FRENKEL)
203  {
204  rateOverlap = 2.0*normalForce * species->getSinterRate() / species->getSinterAdhesion();
205  }
207  {
208  if ((getContactRadius())/getEffectiveRadius() < a0_R)
209  {
210  rateOverlap = 0.0; //normalForce / species->getSinterAdhesion();
211  //ToDo: Measure the evolution of the creep compliance: Art.Contact creep compliance of viscoelastic material via nanoindentation
212  } else {
213  const Mdouble C1 = std::pow((63 * pow(pi, 3.0) / 16.0), 2.0 / 7.0);
214  const Mdouble C2 = pow((species->getSeparationDis()/ getEffectiveRadius()), 2.0 / 7.0);
215  const Mdouble C3 = species->getFluidity()* species->getSurfTension()/getEffectiveRadius();
216 
217  Mdouble time_s = std::pow(8.0*getOverlap()/(getEffectiveRadius()*C1*C2*std::pow(C3,2.0/7.0)),7.0/2.0);
218 
219  rateOverlap = getEffectiveRadius()*C1*C2*((2.0*std::pow(C3,2.0/7.0))/(7.0*std::pow(time_s,5.0/7.0))) * (normalForce / species->getSinterAdhesion());
220 
221  const Mdouble aVisc_R = std::pow(63.0 * std::pow(pi, 3.0), 1.0 / 5.0) *
222  std::pow((1.0/8.0)*(species->getSeparationDis())/ (0.5*getEffectiveRadius()), 2.0 / 5.0);
223 
224 
225  if (getContactRadius()/getEffectiveRadius() > aVisc_R)
226  {
227  Mdouble t = (getOverlap())*(1.0/(4.0* species->getFluidity()* species->getSurfTension()));
228 
229  Mdouble theta = atan(std::pow((8.0* species->getFluidity()* species->getSurfTension()*t)/getEffectiveRadius(),0.5));
230 
231  Mdouble dtheta = (8.0* species->getFluidity()* species->getSurfTension()/getEffectiveRadius());
232 
233  dtheta *= (std::pow(2.0,-5.0/3.0))*cos(theta)*sin(theta);
234  Mdouble K1 = tan(theta)/2.0 - (sin(theta)/6.0)*((2.0*(2.0-cos(theta))+(1.0+cos(theta)))/((1.0+cos(theta)))*(2.0-cos(theta)));
235  dtheta /= std::pow(K1,2.0);
236 
237  dtheta /= (std::pow(2.0-cos(theta),5.0/3.0))*(std::pow(1.0+cos(theta),4.0/3.0));
238  //++++++
239  rateOverlap2 = 2.0*getEffectiveRadius()*std::pow(4.0/(std::pow(1.0+cos(theta),2.0)*(2.0-cos(theta))),2.0/3.0);
240  rateOverlap2 *= sin(theta)*cos(theta)* dtheta;
241 
242  Mdouble term1 = 4.0*std::pow(2.0,1.0/3.0)*std::pow(sin(theta),3.0)*dtheta*(cos(theta)-1.0);
243  Mdouble term2 = std::pow(cos(theta)+1.0,7.0/3.0)*std::pow(-cos(theta)+2.0,5.0/3.0);
244  rateOverlap2 -= term1/term2;
245  rateOverlap2 *= 2.0*getEffectiveRadius()*(normalForce/species->getSinterAdhesion());
246 
247  rateOverlap = rateOverlap2;
248  }
249  }
250  }
251  else{
252  rateOverlap = 0.0;
253  }
254  //[12] Increase plastic overlap due to sintering
255  plasticOverlap_ = std::max(0.0, std::min(d_fluid_0, plasticOverlap_ + rateOverlap * dpmBase->getTimeStep()));
256  }
257  else
258  {
260  setForce(Vec3D(0.0, 0.0, 0.0));
261  setTorque(Vec3D(0.0, 0.0, 0.0));
262  }
263 }
Mdouble getEffectiveRadius() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) ...
The DPMBase header includes quite a few header files, defining all the handlers, which are essential...
Definition: DPMBase.h:75
InteractionHandler * getHandler() const
Gets a point to the interaction handlers to which this interaction belongs.
double Mdouble
Definition: GeneralDefine.h:34
const Vec3D & getRelativeVelocity() const
Returns a constant reference to a vector of relative velocity.
void setRelativeVelocity(Vec3D relativeVelocity)
set the relative velocity of the current of the interactions.
Mdouble getSeparationDis() const
accesses the critical separation distance. This mimics inter-surface forces.
void setForce(Vec3D force)
set total force (this is used by the normal force, tangential forces are added use addForce) ...
const Vec3D & getContactPoint() const
Gets constant reference to contact point (vector).
BaseInteractable * getI()
Returns a pointer to the second object involved in the interaction (often a wall or a particle)...
static Mdouble dot(const Vec3D &a, const Vec3D &b)
Calculates the dot product of two Vec3D: .
Definition: Vector.cc:76
void setNormalRelativeVelocity(Mdouble normalRelativeVelocit)
set the normal component of the relative velocity.
Mdouble getFluidity() const
accesses the fluidity (inverse of viscosity).
const Vec3D & getNormal() const
Gets the normal vector between the two interacting objects.
Mdouble cos(Mdouble x)
Definition: ExtendedMath.cc:64
BaseInteractable * getP()
Returns a pointer to first object involved in the interaction (normally a particle).
Mdouble getNormalRelativeVelocity() const
Returns a double which is the norm (length) of the relative velocity vector.
const SinterLinNormalSpecies * getSpecies() const
Returns a const pointer of type LinearViscoelasticNormalSpecies*.
Mdouble getSurfTension() const
accesses the surface tension.
Mdouble sin(Mdouble x)
Definition: ExtendedMath.cc:44
SINTER_APPROACH getSinterType() const
const Mdouble pi
Definition: ExtendedMath.h:45
Mdouble getSinterRate() const
Accesses sinterRate_.
T tan(T x)
Definition: ExtendedMath.h:178
void setTorque(Vec3D torque)
set the total force (this is used by the normal force, tangential torques are added use addTorque) ...
Mdouble getOverlap() const
Returns a Mdouble with the current overlap between the two interacting objects.
SinterLinNormalSpecies contains the parameters used to describe a plastic-cohesive normal force (Stef...
void setAbsoluteNormalForce(Mdouble absoluteNormalForce)
the absolute values of the norm (length) of the normal force
Mdouble getComplianceZero() const
Accesses the instantaneous compliance (compliance zero)
Mdouble getSinterAdhesion() const
Accesses sinterAdhesion_.
Mdouble getDissipation() const
Allows the normal dissipation to be accessed.
Mdouble getContactRadius() const
Returns a Mdouble with the current contact between the two interacting objects.
Mdouble getUnloadingStiffnessMax() const
Returns the maximum unloading stiffness of the linear plastic-viscoelastic normal force...
Mdouble getPenetrationDepthMax() const
Returns the maximum penetration depth of the linear plastic-viscoelastic normal force.
Definition: Vector.h:49
Mdouble getLoadingStiffness() const
Returns the loading stiffness of the linear plastic-viscoelastic normal force.
DPMBase * getDPMBase()
Gets the problem that is solved using this handler.
Definition: BaseHandler.h:725
Mdouble getTimeStep() const
Returns the simulation time step.
Definition: DPMBase.cc:1241
Mdouble getCohesionStiffness() const
Returns the cohesive stiffness of the linear plastic-viscoelastic normal force.
std::string SinterLinInteraction::getBaseName ( ) const
virtual

Returns the name of the interaction.

Returns
std::string

Definition at line 108 of file SinterLinInteraction.cc.

109 {
110  return "Sinter";
111 }
Mdouble SinterLinInteraction::getElasticEnergy ( ) const
overridevirtual

Computes and returns the amount of elastic energy stored in the spring.

Returns
Mdouble
Todo:
TW this is not correct; we should count the return energy

Reimplemented from BaseInteraction.

Definition at line 267 of file SinterLinInteraction.cc.

References BaseNormalForce::getConstantRestitution(), BaseInteraction::getEffectiveMass(), SinterLinNormalSpecies::getLoadingStiffness(), BaseInteraction::getOverlap(), getSpecies(), and mathsFunc::square().

268 {
269  Mdouble energy = getOverlap() > 0 ? 0.5 * (getSpecies()->getLoadingStiffness() * mathsFunc::square(getOverlap())) : 0.0;
270  if (getSpecies()->getConstantRestitution()) energy *= 2.0*getEffectiveMass();
271  return energy;
273 }
bool getConstantRestitution() const
double Mdouble
Definition: GeneralDefine.h:34
const SinterLinNormalSpecies * getSpecies() const
Returns a const pointer of type LinearViscoelasticNormalSpecies*.
Mdouble getOverlap() const
Returns a Mdouble with the current overlap between the two interacting objects.
Mdouble getLoadingStiffness() const
Returns the loading stiffness of the linear plastic-viscoelastic normal force.
T square(const T val)
squares a number
Definition: ExtendedMath.h:106
Mdouble getEffectiveMass() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) ...
Mdouble SinterLinInteraction::getMaxOverlap ( ) const
Returns
Mdouble plasticOverlap_

Definition at line 286 of file SinterLinInteraction.cc.

References maxOverlap_.

Referenced by getUnloadingStiffness().

287 {
288  return maxOverlap_;
289 }
Mdouble SinterLinInteraction::getPlasticOverlap ( ) const
Returns
Mdouble plasticOverlap_

Definition at line 294 of file SinterLinInteraction.cc.

References plasticOverlap_.

295 {
296  return plasticOverlap_;
297 }
const SinterLinNormalSpecies * SinterLinInteraction::getSpecies ( ) const

Returns a const pointer of type LinearViscoelasticNormalSpecies*.

Returns
const SinterLinNormalSpecies*

Definition at line 278 of file SinterLinInteraction.cc.

References BaseInteraction::getBaseSpecies().

Referenced by computeNormalForce(), getElasticEnergy(), and getUnloadingStiffness().

279 {
280  return dynamic_cast<const SinterLinNormalSpecies*>(getBaseSpecies());
281 }
const BaseSpecies * getBaseSpecies() const
Return a constant point to BaseSpecies of the interaction.
SinterLinNormalSpecies contains the parameters used to describe a plastic-cohesive normal force (Stef...
Mdouble SinterLinInteraction::getUnloadingStiffness ( ) const
Returns
Mdouble

Definition at line 321 of file SinterLinInteraction.cc.

References BaseInteraction::getEffectiveRadius(), SinterLinNormalSpecies::getLoadingStiffness(), getMaxOverlap(), BaseInteraction::getOverlap(), SinterLinNormalSpecies::getPenetrationDepthMax(), getSpecies(), and SinterLinNormalSpecies::getUnloadingStiffnessMax().

322 {
323 
324  const SinterLinNormalSpecies* species = getSpecies();
325  const Mdouble effectiveDiameter = 2.0 * getEffectiveRadius();
326 
327  Mdouble d_max_fluid = (species->getUnloadingStiffnessMax() / (species->getUnloadingStiffnessMax()
328  - species->getLoadingStiffness()))* species->getPenetrationDepthMax() *
329  effectiveDiameter;
330 
331  if (getOverlap() > d_max_fluid)
332  return species->getUnloadingStiffnessMax();
333  else
334  return species->getLoadingStiffness() +
335  (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()) * getMaxOverlap() / d_max_fluid;
336 }
Mdouble getEffectiveRadius() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) ...
double Mdouble
Definition: GeneralDefine.h:34
Mdouble getMaxOverlap() const
const SinterLinNormalSpecies * getSpecies() const
Returns a const pointer of type LinearViscoelasticNormalSpecies*.
Mdouble getOverlap() const
Returns a Mdouble with the current overlap between the two interacting objects.
SinterLinNormalSpecies contains the parameters used to describe a plastic-cohesive normal force (Stef...
Mdouble getUnloadingStiffnessMax() const
Returns the maximum unloading stiffness of the linear plastic-viscoelastic normal force...
Mdouble getPenetrationDepthMax() const
Returns the maximum penetration depth of the linear plastic-viscoelastic normal force.
Mdouble getLoadingStiffness() const
Returns the loading stiffness of the linear plastic-viscoelastic normal force.
void SinterLinInteraction::read ( std::istream &  is)
overridevirtual

Interaction read function, which accepts an std::istream as input.

Calls the read function of BaseInteraction().

Parameters
[in,out]is

Reimplemented from BaseInteraction.

Definition at line 97 of file SinterLinInteraction.cc.

References plasticOverlap_, and BaseInteraction::read().

98 {
100  std::string dummy;
101  is >> dummy >> plasticOverlap_;
102  //helpers::readOptionalVariable<Mdouble>(is, "maxOverlap", maxOverlap_);
103 }
void read(std::istream &is) override
Interaction read function, which accepts an std::istream as input.
void SinterLinInteraction::setMaxOverlap ( Mdouble  maxOverlap)
Parameters
[in]maxOverlap

Definition at line 304 of file SinterLinInteraction.cc.

References maxOverlap_.

305 {
306  maxOverlap_ = maxOverlap;
307 }
void SinterLinInteraction::setPlasticOverlap ( Mdouble  plasticOverlap)
Parameters
[in]maxOverlap

Definition at line 312 of file SinterLinInteraction.cc.

References plasticOverlap_.

313 {
314  plasticOverlap_ = plasticOverlap;
315 }
void SinterLinInteraction::write ( std::ostream &  os) const
overridevirtual

Interaction write function, which accepts an std::ostream as input.

Calls the write function of BaseInteraction().

Parameters
[in,out]os

Reimplemented from BaseInteraction.

Definition at line 87 of file SinterLinInteraction.cc.

References plasticOverlap_, and BaseInteraction::write().

88 {
90  os << " plasticOverlap " << plasticOverlap_;
91 }
void write(std::ostream &os) const override
Interaction print function, which accepts an std::ostream as input.

Member Data Documentation

Mdouble SinterLinInteraction::maxOverlap_
private

Definition at line 128 of file SinterLinInteraction.h.

Referenced by getMaxOverlap(), and setMaxOverlap().

Mdouble SinterLinInteraction::plasticOverlap_
private

The documentation for this class was generated from the following files: