ChuteWithHopper Class Reference

ChuteWithHopper has a hopper as inflow. More...

#include <ChuteWithHopper.h>

+ Inheritance diagram for ChuteWithHopper:

Public Member Functions

 ChuteWithHopper (const Chute &other)
 This is a copy constructor for Chute problems. More...
 
 ChuteWithHopper (const Mercury3D &other)
 Copy constructor, converts an existing Mercury3D object into a ChuteWithHopper object. More...
 
 ChuteWithHopper (const MercuryBase &other)
 Copy constructor, converts an existing MercuryBase object into a ChuteWithHopper object. More...
 
 ChuteWithHopper (const DPMBase &other)
 Copy constructor, converts an existing DPMBase object into a ChuteWithHopper object. More...
 
 ChuteWithHopper ()
 This is the default constructor. More...
 
void setHopperFillingPercentage (Mdouble hopperFillingPercentage)
 Sets the hopper filling percentage. More...
 
void setHopperLowestPoint (Mdouble hopperLowestPoint)
 Sets the vertical distance of the lowest hopper point relative to the start of the chute. More...
 
Mdouble getHopperLowestPoint () const
 Returns the vertical distance of the lowest hopper point relative to the start of the chute. More...
 
Mdouble getChuteLength () const
 Allows chute length to be accessed. More...
 
void setChuteLength (Mdouble chuteLength) override
 sets xMax to chuteLength+hopperlength_, and thus specifies the length off the runoff chute More...
 
void setIsHopperCentred (bool isHopperCentred)
 Sets an extra shift in X-direction of the whole system. More...
 
void setHopperLowerFillingHeight (Mdouble hopperLowerFillingHeight)
 Sets the height above which the hopper is filled with new particles. More...
 
void setHopperShift (Mdouble hopperShift)
 Sets the shift in X-direction of the whole setup after rotation. More...
 
void setHopperLift (Mdouble hopperLift)
 This lifts the hopper above the plane of the chute (after rotation) More...
 
Mdouble getHopperLift () const
 Returns the hopper's lift above the chute bottom plane. More...
 
Mdouble getHopperShift () const
 Returns the shift in X-direction of the whole setup after rotation. More...
 
void setHopperDimension (unsigned int hopperDimension)
 Sets whether the hopper should have vertical (1) or inclined (2) walls in Y-direction. More...
 
void setIsHopperAlignedWithBottom (bool isHopperAlignedWithBottom)
 Sets the alignment of hopper with chute bottom. More...
 
Mdouble getHopperAngle () const
 Returns the angle of the hopper entrance relative to the vertical. More...
 
Mdouble getHopperLength () const
 Returns the width of the hopper entrance. More...
 
Mdouble getHopperExitLength () const
 Returns the width of the hopper exit. More...
 
Mdouble getHopperHeight () const
 Returns the height of the hopper relative to the chute start. More...
 
Mdouble getHopperExitHeight () const
 Returns the height of the lowest hopper point above the chute. More...
 
bool getIsHopperCentred () const
 Returns whether the setup is shifted another 40 units in X-direction. More...
 
Mdouble getHopperFillingPercentage () const
 Returns the vertical percentage of the hopper insertion boundary which is filled. More...
 
unsigned int getHopperDimension () const
 Returns whether the hopper has vertical (1) or inclined (2) walls in Y-direction. More...
 
void setupInitialConditions () override
 Sets up the initial conditions for the problem. More...
 
void setHopper (Mdouble exitLength, Mdouble exitHeight, Mdouble angle, Mdouble length, Mdouble height)
 Sets the hopper's geometrical properties. More...
 
Mdouble getMaximumVelocityInducedByGravity () const
 Returns the theoretical maximum particle velocity due to gravity. More...
 
Mdouble getTimeStepRatio () const
 Returns smallest particle radius over maximum gravitational velocity. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads setup properties from an istream. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 Writes setup properties to an ostream. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Reads setup properties from a string. More...
 
- Public Member Functions inherited from Chute
 Chute ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Chute (const DPMBase &other)
 Copy constructor, converts an existing DPMBase problem into a Chute problem. More...
 
 Chute (const MercuryBase &other)
 Copy constructor, converts an existing MercuryBase problem into a Chute problem. More...
 
 Chute (const Mercury3D &other)
 Copy constructor, converts an existing Mercury3D problem into a Chute problem. More...
 
 Chute (const Chute &other)
 Default copy constructor. More...
 
void constructor ()
 This is the actual constructor METHOD; it is called by all constructors above (except the default copy constructor). More...
 
void setupSideWalls ()
 Creates chute side walls (either solid or periodic) More...
 
void makeChutePeriodic ()
 This makes the chute periodic in Y. More...
 
bool getIsPeriodic () const
 Returns whether the chute is periodic in Y. More...
 
void setFixedParticleRadius (Mdouble fixedParticleRadius)
 Sets the particle radius of the fixed particles which constitute the (rough) chute bottom. More...
 
Mdouble getFixedParticleRadius () const
 Returns the particle radius of the fixed particles which constitute the (rough) chute bottom. More...
 
void setFixedParticleSpacing (Mdouble fixedParticleSpacing)
 Sets the spacing of the fixed particles which constitute the (rough) chute bottom; used in triangular packing only. More...
 
Mdouble getFixedParticleSpacing () const
 Returns the particle radius of the fixed particles which constitute the (rough) chute bottom; used in triangular packing only. More...
 
void setRoughBottomType (RoughBottomType roughBottomType)
 Sets the type of rough bottom of the chute. More...
 
void setRoughBottomType (std::string roughBottomTypeString)
 Sets the type of rough bottom of the chute, using a string with the EXACT enum type as input. More...
 
RoughBottomType getRoughBottomType () const
 Returns the type of (rough) bottom of the chute. More...
 
void setChuteAngle (Mdouble chuteAngle)
 Sets gravity vector according to chute angle (in degrees) More...
 
void setChuteAngleAndMagnitudeOfGravity (Mdouble chuteAngle, Mdouble gravity)
 Sets gravity vector according to chute angle (in degrees) More...
 
Mdouble getChuteAngle () const
 Returns the chute angle (in radians) More...
 
Mdouble getChuteAngleDegrees () const
 Returns the chute angle (in degrees) More...
 
void setMaxFailed (unsigned int maxFailed)
 Sets the number of times a particle will be tried to be added to the insertion boundary. More...
 
unsigned int getMaxFailed () const
 Returns the number of times a particle will be tried to be added to the insertion boundary. More...
 
void setInflowParticleRadius (Mdouble inflowParticleRadius)
 Sets the radius of the inflow particles to a single one (i.e. ensures a monodisperse inflow). More...
 
void setInflowParticleRadius (Mdouble minInflowParticleRadius, Mdouble maxInflowParticleRadius)
 Sets the minimum and maximum radius of the inflow particles. More...
 
void setMinInflowParticleRadius (Mdouble minInflowParticleRadius)
 sets the minimum radius of inflow particles More...
 
void setMaxInflowParticleRadius (Mdouble maxInflowParticleRadius)
 Sets the maximum radius of inflow particles. More...
 
Mdouble getInflowParticleRadius () const
 Returns the average radius of inflow particles. More...
 
Mdouble getMinInflowParticleRadius () const
 returns the minimum radius of inflow particles More...
 
Mdouble getMaxInflowParticleRadius () const
 Returns the maximum radius of inflow particles. More...
 
void setInflowHeight (Mdouble inflowHeight)
 Sets maximum inflow height (Z-direction) More...
 
Mdouble getInflowHeight () const
 Returns the maximum inflow height (Z-direction) More...
 
void setInflowVelocity (Mdouble inflowVelocity)
 Sets the average inflow velocity. More...
 
Mdouble getInflowVelocity () const
 Returns the average inflow velocity. More...
 
void setInflowVelocityVariance (Mdouble inflowVelocityVariance)
 Sets the inflow velocity variance. More...
 
Mdouble getInflowVelocityVariance () const
 Returns the inflow velocity variance. More...
 
void setChuteWidth (Mdouble chuteWidth)
 Sets the chute width (Y-direction) More...
 
Mdouble getChuteWidth () const
 Returns the chute width (Y-direction) More...
 
Mdouble getChuteLength () const
 Returns the chute length (X-direction) More...
 
void setInsertionBoundary (InsertionBoundary *insertionBoundary)
 Sets the chute insertion boundary. More...
 
- Public Member Functions inherited from Mercury3D
 Mercury3D ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Mercury3D (const DPMBase &other)
 Copy-constructor for creates an Mercury3D problem from an existing MD problem. More...
 
 Mercury3D (const Mercury3D &other)
 Copy-constructor. More...
 
void constructor ()
 Function that sets the SystemDimension and ParticleDimension to 3. More...
 
std::vector< BaseParticle * > hGridFindParticleContacts (const BaseParticle *obj) override
 Returns all particles that have a contact with a given particle. More...
 
- Public Member Functions inherited from MercuryBase
 MercuryBase ()
 This is the default constructor. It sets sensible defaults. More...
 
 ~MercuryBase () override
 This is the default destructor. More...
 
 MercuryBase (const MercuryBase &mercuryBase)
 Copy-constructor. More...
 
void constructor ()
 This is the actual constructor, it is called do both constructors above. More...
 
void hGridActionsBeforeTimeLoop () override
 This sets up the broad phase information, has to be done at this stage because it requires the particle size. More...
 
void hGridActionsBeforeTimeStep () override
 Performs all necessary actions before a time-step, like updating the particles and resetting all the bucket information, etc. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads the MercuryBase from an input stream, for example a restart file. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 Writes all data into a restart file. More...
 
Mdouble getHGridCurrentMaxRelativeDisplacement () const
 Returns hGridCurrentMaxRelativeDisplacement_. More...
 
Mdouble getHGridTotalCurrentMaxRelativeDisplacement () const
 Returns hGridTotalCurrentMaxRelativeDisplacement_. More...
 
void setHGridUpdateEachTimeStep (bool updateEachTimeStep)
 Sets whether or not the HGrid must be updated every time step. More...
 
bool getHGridUpdateEachTimeStep () const final
 Gets whether or not the HGrid is updated every time step. More...
 
void setHGridMaxLevels (unsigned int HGridMaxLevels)
 Sets the maximum number of levels of the HGrid in this MercuryBase. More...
 
unsigned int getHGridMaxLevels () const
 Gets the maximum number of levels of the HGrid in this MercuryBase. More...
 
HGridMethod getHGridMethod () const
 Gets whether the HGrid in this MercuryBase is BOTTOMUP or TOPDOWN. More...
 
void setHGridMethod (HGridMethod hGridMethod)
 Sets the HGridMethod to either BOTTOMUP or TOPDOWN. More...
 
HGridDistribution getHGridDistribution () const
 Gets how the sizes of the cells of different levels are distributed. More...
 
void setHGridDistribution (HGridDistribution hGridDistribution)
 Sets how the sizes of the cells of different levels are distributed. More...
 
Mdouble getHGridCellOverSizeRatio () const
 Gets the ratio of the smallest cell over the smallest particle. More...
 
void setHGridCellOverSizeRatio (Mdouble cellOverSizeRatio)
 Sets the ratio of the smallest cell over the smallest particle. More...
 
bool hGridNeedsRebuilding ()
 Gets if the HGrid needs rebuilding before anything else happens. More...
 
virtual unsigned int getHGridTargetNumberOfBuckets () const
 Gets the desired number of buckets, which is the maximum of the number of particles and 10. More...
 
virtual Mdouble getHGridTargetMinInteractionRadius () const
 Gets the desired size of the smallest cells of the HGrid. More...
 
virtual Mdouble getHGridTargetMaxInteractionRadius () const
 Gets the desired size of the largest cells of the HGrid. More...
 
bool checkParticleForInteraction (const BaseParticle &P) final
 Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle. More...
 
bool checkParticleForInteractionLocal (const BaseParticle &P) final
 Checks if the given BaseParticle has an interaction with a BaseWall or other BaseParticles in a local domain. More...
 
virtual Mdouble userHGridCellSize (unsigned int level)
 Virtual function that enables inheriting classes to implement a function to let the user set the cell size of the HGrid. More...
 
void hGridInfo (std::ostream &os=std::cout) const
 Writes the info of the HGrid to the screen in a nice format. More...
 
- Public Member Functions inherited from DPMBase
void constructor ()
 A function which initialises the member variables to default values, so that the problem can be solved off the shelf; sets up a basic two dimensional problem which can be solved off the shelf. It is called in the constructor DPMBase(). More...
 
 DPMBase ()
 Constructor that calls the "void constructor()". More...
 
 DPMBase (const DPMBase &other)
 Copy constructor type-2. More...
 
virtual ~DPMBase ()
 virtual destructor More...
 
void autoNumber ()
 The autoNumber() function calls three functions: setRunNumber(), readRunNumberFromFile() and incrementRunNumberInFile(). More...
 
std::vector< int > get1DParametersFromRunNumber (int size_x) const
 This turns a counter into 1 index, which is a useful feature for performing 1D parameter study. The index run from 1:size_x, while the study number starts at 0 (initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< int > get2DParametersFromRunNumber (int size_x, int size_y) const
 This turns a counter into 2 indices which is a very useful feature for performing a 2D study. The indices run from 1:size_x and 1:size_y, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< int > get3DParametersFromRunNumber (int size_x, int size_y, int size_z) const
 This turns a counter into 3 indices, which is a useful feature for performing a 3D parameter study. The indices run from 1:size_x, 1:size_y and 1:size_z, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
int launchNewRun (const char *name, bool quick=false)
 This launches a code from within this code. Please pass the name of the code to run. More...
 
void setRunNumber (int runNumber)
 This sets the counter/Run number, overriding the defaults. More...
 
int getRunNumber () const
 This returns the current value of the counter (runNumber_) More...
 
virtual void decompose ()
 Sends particles from processorId to the root processor. More...
 
void solve ()
 The work horse of the code. More...
 
void initialiseSolve ()
 Beginning of the solve routine, before time stepping. More...
 
void finaliseSolve ()
 End of the solve routine, after time stepping. More...
 
virtual void computeOneTimeStep ()
 Performs everything needed for one time step, used in the time-loop of solve(). More...
 
void checkSettings ()
 Checks if the essentials are set properly to go ahead with solving the problem. More...
 
void forceWriteOutputFiles ()
 Writes output files immediately, even if the current time step was not meant to be written. Also resets the last saved time step. More...
 
virtual void writeOutputFiles ()
 Writes simulation data to all the main Mercury files: .data, .ene, .fstat, .xballs and .restart (see the Mercury website for more details regarding these files). More...
 
void solve (int argc, char *argv[])
 The work horse of the code. Can handle flags from the command line. More...
 
virtual void writeXBallsScript () const
 This writes a script which can be used to load the xballs problem to display the data just generated. More...
 
virtual Mdouble getInfo (const BaseParticle &P) const
 A virtual function that returns some user-specified information about a particle. More...
 
ParticleVtkWritergetVtkWriter () const
 
virtual void writeRestartFile ()
 Stores all the particle data for current save time step to a "restart" file, which is a file simply intended to store all the information necessary to "restart" a simulation from a given time step (see also MercuryDPM.org for more information on restart files). More...
 
void writeDataFile ()
 
void writeEneFile ()
 
void writeFStatFile ()
 
void fillDomainWithParticles (unsigned N=50)
 
bool readRestartFile (ReadOptions opt=ReadOptions::ReadAll)
 Reads all the particle data corresponding to a given, existing . restart file (for more details regarding restart files, refer to the training materials on the MercuryDPM website).Returns true if it is successful, false otherwise. More...
 
int readRestartFile (std::string fileName, ReadOptions opt=ReadOptions::ReadAll)
 The same as readRestartFile(bool), but also reads all the particle data corresponding to the current saved time step. More...
 
virtual BaseWallreadUserDefinedWall (const std::string &type) const
 Allows you to read in a wall defined in a Driver directory; see USER/Luca/ScrewFiller. More...
 
virtual void readOld (std::istream &is)
 Reads all data from a restart file, e.g. domain data and particle data; old version. More...
 
bool readDataFile (std::string fileName="", unsigned int format=0)
 This allows particle data to be reloaded from data files. More...
 
bool readParAndIniFiles (std::string fileName)
 Allows the user to read par.ini files (useful to read files produced by the MDCLR simulation code - external to MercuryDPM) More...
 
bool readNextDataFile (unsigned int format=0)
 Reads the next data file with default format=0. However, one can modify the format based on whether the particle data corresponds to 3D or 2D data- see Visualising data in xballs. More...
 
void readNextFStatFile ()
 Reads the next fstat file. More...
 
bool findNextExistingDataFile (Mdouble tMin, bool verbose=true)
 Finds and opens the next data file, if such a file exists. More...
 
bool readArguments (int argc, char *argv[])
 Can interpret main function input arguments that are passed by the driver codes. More...
 
bool checkParticleForInteractionLocalPeriodic (const BaseParticle &P)
 
void readSpeciesFromDataFile (bool read=true)
 
void importParticlesAs (ParticleHandler &particleHandler, InteractionHandler &interactionHandler, const ParticleSpecies *species)
 Copies particles, interactions assigning species from a local simulation to a global one. Useful for the creation of a cluster. More...
 
MERCURYDPM_DEPRECATED FilegetDataFile ()
 The non const version. Allows one to edit the File::dataFile. More...
 
MERCURYDPM_DEPRECATED FilegetEneFile ()
 The non const version. Allows to edit the File::eneFile. More...
 
MERCURYDPM_DEPRECATED FilegetFStatFile ()
 The non const version. Allows to edit the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED FilegetRestartFile ()
 The non const version. Allows to edit the File::restartFile. More...
 
MERCURYDPM_DEPRECATED FilegetStatFile ()
 The non const version. Allows to edit the File::statFile. More...
 
FilegetInteractionFile ()
 Return a reference to the file InteractionsFile. More...
 
MERCURYDPM_DEPRECATED const FilegetDataFile () const
 The const version. Does not allow for any editing of the File::dataFile. More...
 
MERCURYDPM_DEPRECATED const FilegetEneFile () const
 The const version. Does not allow for any editing of the File::eneFile. More...
 
MERCURYDPM_DEPRECATED const FilegetFStatFile () const
 The const version. Does not allow for any editing of the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED const FilegetRestartFile () const
 The const version. Does not allow for any editing of the File::restartFile. More...
 
MERCURYDPM_DEPRECATED const FilegetStatFile () const
 The const version. Does not allow for any editing of the File::statFile. More...
 
const FilegetInteractionFile () const
 
const std::string & getName () const
 Returns the name of the file. Does not allow to change it though. More...
 
void setName (const std::string &name)
 Allows to set the name of all the files (ene, data, fstat, restart, stat) More...
 
void setName (const char *name)
 Calls setName(std::string) More...
 
void setSaveCount (unsigned int saveCount)
 Sets File::saveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setFileType (FileType fileType)
 Sets File::fileType_ for all files (ene, data, fstat, restart, stat) More...
 
void setOpenMode (std::fstream::openmode openMode)
 Sets File::openMode_ for all files (ene, data, fstat, restart, stat) More...
 
void resetFileCounter ()
 Resets the file counter for each file i.e. for ene, data, fstat, restart, stat) More...
 
void closeFiles ()
 Closes all files (ene, data, fstat, restart, stat) that were opened to read or write. More...
 
void setLastSavedTimeStep (unsigned int nextSavedTimeStep)
 Sets the next time step for all the files (ene, data, fstat, restart, stat) at which the data is to be written or saved. More...
 
Mdouble getTime () const
 Returns the current simulation time. More...
 
Mdouble getNextTime () const
 Returns the current simulation time. More...
 
unsigned int getNumberOfTimeSteps () const
 Returns the current counter of time-steps, i.e. the number of time-steps that the simulation has undergone so far. More...
 
void setTime (Mdouble time)
 Sets a new value for the current simulation time. More...
 
void setTimeMax (Mdouble newTMax)
 Sets a new value for the maximum simulation duration. More...
 
Mdouble getTimeMax () const
 Returns the maximum simulation duration. More...
 
void setLogarithmicSaveCount (Mdouble logarithmicSaveCountBase)
 Sets File::logarithmicSaveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setNToWrite (int nToWrite)
 set the number of elements to write to the screen More...
 
int getNToWrite () const
 get the number of elements to write to the More...
 
void setRotation (bool rotation)
 Sets whether particle rotation is enabled or disabled. More...
 
bool getRotation () const
 Indicates whether particle rotation is enabled or disabled. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (FileType writeWallsVTK)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (bool)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setInteractionsWriteVTK (bool)
 Sets whether interactions are written into a VTK file. More...
 
void setParticlesWriteVTK (bool writeParticlesVTK)
 Sets whether particles are written in a VTK file. More...
 
void setSuperquadricParticlesWriteVTK (bool writeSuperquadricParticlesVTK)
 
MERCURYDPM_DEPRECATED FileType getWallsWriteVTK () const
 Returns whether walls are written in a VTK file. More...
 
bool getParticlesWriteVTK () const
 Returns whether particles are written in a VTK file. More...
 
bool getSuperquadricParticlesWriteVTK () const
 
Mdouble getXMin () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin. More...
 
Mdouble getXMax () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax. More...
 
Mdouble getYMin () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin. More...
 
Mdouble getYMax () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax. More...
 
Mdouble getZMin () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin. More...
 
Mdouble getZMax () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax. More...
 
Mdouble getXCenter () const
 
Mdouble getYCenter () const
 
Mdouble getZCenter () const
 
Vec3D getMin () const
 
Vec3D getMax () const
 
void setXMin (Mdouble newXMin)
 Sets the value of XMin, the lower bound of the problem domain in the x-direction. More...
 
void setYMin (Mdouble newYMin)
 Sets the value of YMin, the lower bound of the problem domain in the y-direction. More...
 
void setZMin (Mdouble newZMin)
 Sets the value of ZMin, the lower bound of the problem domain in the z-direction. More...
 
void setXMax (Mdouble newXMax)
 Sets the value of XMax, the upper bound of the problem domain in the x-direction. More...
 
void setYMax (Mdouble newYMax)
 Sets the value of YMax, the upper bound of the problem domain in the y-direction. More...
 
void setZMax (Mdouble newZMax)
 Sets the value of ZMax, the upper bound of the problem domain in the z-direction. More...
 
void setMax (const Vec3D &max)
 Sets the maximum coordinates of the problem domain. More...
 
void setMax (Mdouble, Mdouble, Mdouble)
 Sets the maximum coordinates of the problem domain. More...
 
void setDomain (const Vec3D &min, const Vec3D &max)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (const Vec3D &min)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (Mdouble, Mdouble, Mdouble)
 Sets the minimum coordinates of the problem domain. More...
 
void setTimeStep (Mdouble newDt)
 Sets a new value for the simulation time step. More...
 
Mdouble getTimeStep () const
 Returns the simulation time step. More...
 
void setNumberOfOMPThreads (int numberOfOMPThreads)
 
int getNumberOfOMPThreads () const
 
void setXBallsColourMode (int newCMode)
 Set the xballs output mode. More...
 
int getXBallsColourMode () const
 Get the xballs colour mode (CMode). More...
 
void setXBallsVectorScale (double newVScale)
 Set the scale of vectors in xballs. More...
 
double getXBallsVectorScale () const
 Returns the scale of vectors used in xballs. More...
 
void setXBallsAdditionalArguments (std::string newXBArgs)
 Set the additional arguments for xballs. More...
 
std::string getXBallsAdditionalArguments () const
 Returns the additional arguments for xballs. More...
 
void setXBallsScale (Mdouble newScale)
 Sets the scale of the view (either normal, zoom in or zoom out) to display in xballs. The default is fit to screen. More...
 
double getXBallsScale () const
 Returns the scale of the view in xballs. More...
 
void setGravity (Vec3D newGravity)
 Sets a new value for the gravitational acceleration. More...
 
Vec3D getGravity () const
 Returns the gravitational acceleration. More...
 
void setBackgroundDrag (Mdouble backgroundDrag)
 Simple access function to turn on a background drag. The force of particleVelocity*drag is applied (note, it allowd to be negaitve i.e. create energy) More...
 
const Mdouble getBackgroundDrag () const
 Return the background drag. More...
 
void setDimension (unsigned int newDim)
 Sets both the system dimensions and the particle dimensionality. More...
 
void setSystemDimensions (unsigned int newDim)
 Sets the system dimensionality. More...
 
unsigned int getSystemDimensions () const
 Returns the system dimensionality. More...
 
void setParticleDimensions (unsigned int particleDimensions)
 Sets the particle dimensionality. More...
 
unsigned int getParticleDimensions () const
 Returns the particle dimensionality. More...
 
std::string getRestartVersion () const
 This is to take into account for different Mercury versions. Returns the version of the restart file. More...
 
void setRestartVersion (std::string newRV)
 Sets restart_version. More...
 
bool getRestarted () const
 Returns the flag denoting if the simulation was restarted or not. More...
 
void setRestarted (bool newRestartedFlag)
 Allows to set the flag stating if the simulation is to be restarted or not. More...
 
bool getAppend () const
 Returns whether the "append" option is on or off. More...
 
void setAppend (bool newAppendFlag)
 Sets whether the "append" option is on or off. More...
 
Mdouble getElasticEnergy () const
 Returns the global elastic energy within the system. More...
 
Mdouble getKineticEnergy () const
 Returns the global kinetic energy stored in the system. More...
 
Mdouble getGravitationalEnergy () const
 Returns the global gravitational potential energy stored in the system. More...
 
Mdouble getRotationalEnergy () const
 JMFT Returns the global rotational energy stored in the system. More...
 
Mdouble getTotalEnergy () const
 
Mdouble getTotalMass () const
 JMFT: Return the total mass of the system, excluding fixed particles. More...
 
Vec3D getCentreOfMass () const
 JMFT: Return the centre of mass of the system, excluding fixed particles. More...
 
Vec3D getTotalMomentum () const
 JMFT: Return the total momentum of the system, excluding fixed particles. More...
 
double getCPUTime ()
 
double getWallTime ()
 
virtual void hGridInsertParticle (BaseParticle *obj UNUSED)
 
virtual void hGridUpdateParticle (BaseParticle *obj UNUSED)
 
virtual void hGridRemoveParticle (BaseParticle *obj UNUSED)
 
bool mpiIsInCommunicationZone (BaseParticle *particle)
 Checks if the position of the particle is in an mpi communication zone or not. More...
 
bool mpiInsertParticleCheck (BaseParticle *P)
 Function that checks if the mpi particle should really be inserted by the current domain. More...
 
void insertGhostParticle (BaseParticle *P)
 This function inserts a particle in the mpi communication boundaries. More...
 
void updateGhostGrid (BaseParticle *P)
 Checks if the Domain/periodic interaction distance needs to be updated and updates it accordingly. More...
 
virtual void gatherContactStatistics (unsigned int index1, int index2, Vec3D Contact, Mdouble delta, Mdouble ctheta, Mdouble fdotn, Mdouble fdott, Vec3D P1_P2_normal_, Vec3D P1_P2_tangential)
 //Not unsigned index because of possible wall collisions. More...
 
void setNumberOfDomains (std::vector< unsigned > direction)
 Sets the number of domains in x-,y- and z-direction. Required for parallel computations. More...
 
void splitDomain (DomainSplit domainSplit)
 
std::vector< unsigned > getNumberOfDomains ()
 returns the number of domains More...
 
DomaingetCurrentDomain ()
 Function that returns a pointer to the domain corresponding to the processor. More...
 
void removeOldFiles () const
 
void setMeanVelocity (Vec3D V_mean_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
void setMeanVelocityAndKineticEnergy (Vec3D V_mean_goal, Mdouble Ek_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
Mdouble getTotalVolume () const
 Get the total volume of the cuboid system. More...
 
Matrix3D getKineticStress () const
 Calculate the kinetic stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getStaticStress () const
 Calculate the static stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getTotalStress () const
 Calculate the total stress tensor in the system averaged over the whole volume. More...
 
virtual void handleParticleRemoval (unsigned int id)
 Handles the removal of particles from the particleHandler. More...
 
virtual void handleParticleAddition (unsigned int id, BaseParticle *p)
 
void writePythonFileForVTKVisualisation () const
 
void setWritePythonFileForVTKVisualisation (bool forceWritePythonFileForVTKVisualisation)
 
bool getWritePythonFileForVTKVisualisation () const
 
WallVTKWritergetWallVTKWriter ()
 

Protected Member Functions

void addHopper ()
 This creates the hopper on top of the chute, see diagram in class description for details of the points. More...
 
- Protected Member Functions inherited from Chute
void actionsBeforeTimeStep () override
 Calls Chute::cleanChute(). More...
 
void cleanChute ()
 Deletes all outflow particles once every 100 time steps. More...
 
virtual void createBottom ()
 Creates the chute bottom, which can be either flat or one of three flavours of rough. More...
 
virtual void addFlowParticlesCompactly ()
 Add initial flow particles in a dense packing. More...
 
virtual SphericalParticle createFlowParticle ()
 
void printTime () const override
 prints time, max time and number of particles More...
 
- Protected Member Functions inherited from Mercury3D
void hGridFindContactsWithinTargetCell (int x, int y, int z, unsigned int l)
 Finds contacts between particles in the target cell. More...
 
void hGridFindContactsWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj)
 Finds contacts between the BaseParticle and the target cell. More...
 
void computeWallForces (BaseWall *w) override
 Compute contacts with a wall. More...
 
void hGridFindParticlesWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj, std::vector< BaseParticle * > &list)
 Finds particles within target cell and stores them in a list. More...
 
void hGridGetInteractingParticleList (BaseParticle *obj, std::vector< BaseParticle * > &list) override
 Obtains all neighbour particles of a given object, obtained from the hgrid. More...
 
void computeInternalForces (BaseParticle *obj) override
 Finds contacts with the BaseParticle; avoids multiple checks. More...
 
bool hGridHasContactsInTargetCell (int x, int y, int z, unsigned int l, const BaseParticle *obj) const
 Tests if the BaseParticle has contacts with other Particles in the target cell. More...
 
bool hGridHasParticleContacts (const BaseParticle *obj) override
 Tests if a BaseParticle has any contacts in the HGrid. More...
 
void hGridRemoveParticle (BaseParticle *obj) override
 Removes a BaseParticle from the HGrid. More...
 
void hGridUpdateParticle (BaseParticle *obj) override
 Updates the cell (not the level) of a BaseParticle. More...
 
- Protected Member Functions inherited from MercuryBase
void hGridRebuild ()
 This sets up the parameters required for the contact model. More...
 
void hGridInsertParticle (BaseParticle *obj) final
 Inserts a single Particle to current grid. More...
 
void hGridUpdateMove (BaseParticle *iP, Mdouble move) final
 Computes the relative displacement of the given BaseParticle and updates the currentMaxRelativeDisplacement_ accordingly. More...
 
void hGridActionsBeforeIntegration () override
 Resets the currentMaxRelativeDisplacement_ to 0. More...
 
void hGridActionsAfterIntegration () override
 This function has to be called before integrateBeforeForceComputation. More...
 
HGridgetHGrid ()
 Gets the HGrid used by this problem. More...
 
const HGridgetHGrid () const
 Gets the HGrid used by this problem, const version. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Reads the next command line argument. More...
 
- Protected Member Functions inherited from DPMBase
virtual void computeAllForces ()
 Computes all the forces acting on the particles using the BaseInteractable::setForce() and BaseInteractable::setTorque() More...
 
virtual void computeInternalForce (BaseParticle *, BaseParticle *)
 Computes the forces between two particles (internal in the sense that the sum over all these forces is zero i.e. fully modelled forces) More...
 
virtual void computeExternalForces (BaseParticle *)
 Computes the external forces, such as gravity, acting on particles. More...
 
virtual void computeForcesDueToWalls (BaseParticle *, BaseWall *)
 Computes the forces on the particles due to the walls (normals are outward normals) More...
 
virtual void actionsOnRestart ()
 A virtual function where the users can add extra code which is executed only when the code is restarted. More...
 
virtual void actionsBeforeTimeLoop ()
 A virtual function. Allows one to carry out any operations before the start of the time loop. More...
 
virtual void computeAdditionalForces ()
 A virtual function which allows to define operations to be executed prior to the OMP force collect. More...
 
virtual void actionsAfterSolve ()
 A virtual function which allows to define operations to be executed after the solve(). More...
 
virtual void actionsAfterTimeStep ()
 A virtual function which allows to define operations to be executed after time step. More...
 
void writeVTKFiles () const
 
virtual void outputXBallsData (std::ostream &os) const
 This function writes the location of the walls and particles in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void outputXBallsDataParticle (unsigned int i, unsigned int format, std::ostream &os) const
 This function writes out the particle locations into an output stream in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void writeEneHeader (std::ostream &os) const
 Writes a header with a certain format for ENE file. More...
 
virtual void writeFstatHeader (std::ostream &os) const
 Writes a header with a certain format for FStat file. More...
 
virtual void writeEneTimeStep (std::ostream &os) const
 Write the global kinetic, potential energy, etc. in the system. More...
 
virtual void initialiseStatistics ()
 
virtual void outputStatistics ()
 
void gatherContactStatistics ()
 
virtual void processStatistics (bool)
 
virtual void finishStatistics ()
 
virtual void integrateBeforeForceComputation ()
 Update particles' and walls' positions and velocities before force computation. More...
 
virtual void integrateAfterForceComputation ()
 Update particles' and walls' positions and velocities after force computation. More...
 
virtual void checkInteractionWithBoundaries ()
 There are a range of boundaries one could implement depending on ones' problem. This methods checks for interactions between particles and such range of boundaries. See BaseBoundary.h and all the boundaries in the Boundaries folder. More...
 
void setFixedParticles (unsigned int n)
 Sets a number, n, of particles in the particleHandler as "fixed particles". More...
 
virtual bool continueSolve () const
 A virtual function for deciding whether to continue the simulation, based on a user-specified criterion. More...
 
void outputInteractionDetails () const
 Displays the interaction details corresponding to the pointer objects in the interaction handler. More...
 
bool isTimeEqualTo (Mdouble time) const
 Checks whether the input variable "time" is the current time in the simulation. More...
 
void removeDuplicatePeriodicParticles ()
 Removes periodic duplicate Particles. More...
 
void checkAndDuplicatePeriodicParticles ()
 For simulations using periodic boundaries, checks and adds particles when necessary into the particle handler. See DPMBase.cc and PeriodicBoundary.cc for more details. More...
 
void performGhostParticleUpdate ()
 When the Verlet scheme updates the positions and velocities of particles, ghost particles will need an update as wel. Their status will also be updated accordingly. More...
 
void deleteGhostParticles (std::set< BaseParticle * > &particlesToBeDeleted)
 
void synchroniseParticle (BaseParticle *, unsigned fromProcessor=0)
 
void performGhostVelocityUpdate ()
 updates the final time-step velocity of the ghost particles More...
 
void setSoftStop ()
 function for setting sigaction constructor. More...
 

Private Member Functions

void constructor ()
 This is the actually constructor, get called by all constructors above. More...
 

Private Attributes

Mdouble hopperLength_
 Dimension of the hopper in vertical direction. More...
 
Mdouble hopperHeight_
 Dimension of the hopper in horizontal direction. More...
 
Mdouble hopperAngle_
 Angle between the two pieces of the hopper walls. More...
 
Mdouble hopperExitLength_
 Dimension of the hopper exit in vertical direction. More...
 
Mdouble hopperExitHeight_
 Dimension of the hopper exit in vertical direction. More...
 
Mdouble hopperShift_
 The x position where the Chute starts (defined as the beginning of the hopper) More...
 
Mdouble hopperLowerFillingHeight_
 Relative height (in [0,1)) above which the hopper is replenished with new particles. More...
 
bool isHopperCentred_
 If this flag is set, the hopper will be constructed in the xy-center of the domain, and not next to the xmin-domain boundary; by default off. More...
 
Mdouble hopperLift_
 This is the vertical distance the chute is lifted above the plane. More...
 
unsigned int hopperDimension_
 This is the dimension of the hopper, my default it is one dimensional and hence does not have side wall. More...
 
bool isHopperAlignedWithBottom_
 This is the flag, which sets if the chute bottom is aligned with the hopper, by default it is. More...
 
Mdouble hopperFillingPercentage_
 This is which percentage of the hopper is used for creating new partices;. More...
 
Mdouble hopperLowestPoint_
 The NEGATIVE z coordinate of the right C point (when the left C point is in the origin) More...
 

Additional Inherited Members

- Public Types inherited from DPMBase
enum class  ReadOptions : int { ReadAll , ReadNoInteractions , ReadNoParticlesAndInteractions }
 
enum class  DomainSplit {
  X , Y , Z , XY ,
  XZ , YZ , XYZ
}
 
- Static Public Member Functions inherited from DPMBase
static void incrementRunNumberInFile ()
 Increment the run Number (counter value) stored in the file_counter (COUNTER_DONOTDEL) by 1 and store the new value in the counter file. More...
 
static int readRunNumberFromFile ()
 Read the run number or the counter from the counter file (COUNTER_DONOTDEL) More...
 
static bool areInContact (const BaseParticle *pI, const BaseParticle *pJ)
 Checks if two particle are in contact or is there any positive overlap. More...
 
- Public Attributes inherited from DPMBase
SpeciesHandler speciesHandler
 A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc. More...
 
RNG random
 This is a random generator, often used for setting up the initial conditions etc... More...
 
ParticleHandler particleHandler
 An object of the class ParticleHandler, contains the pointers to all the particles created. More...
 
ParticleHandler paoloParticleHandler
 Fake particleHandler created by Paolo needed temporary by just Paolo. More...
 
WallHandler wallHandler
 An object of the class WallHandler. Contains pointers to all the walls created. More...
 
BoundaryHandler boundaryHandler
 An object of the class BoundaryHandler which concerns insertion and deletion of particles into or from regions. More...
 
PeriodicBoundaryHandler periodicBoundaryHandler
 Internal handler that deals with periodic boundaries, especially in a parallel build. More...
 
DomainHandler domainHandler
 An object of the class DomainHandler which deals with parallel code. More...
 
InteractionHandler interactionHandler
 An object of the class InteractionHandler. More...
 
CGHandler cgHandler
 Object of the class cgHandler. More...
 
File dataFile
 An instance of class File to handle in- and output into a .data file. More...
 
File fStatFile
 An instance of class File to handle in- and output into a .fstat file. More...
 
File eneFile
 An instance of class File to handle in- and output into a .ene file. More...
 
File restartFile
 An instance of class File to handle in- and output into a .restart file. More...
 
File statFile
 An instance of class File to handle in- and output into a .stat file. More...
 
File interactionFile
 File class to handle in- and output into .interactions file. This file hold information about interactions. More...
 
Time clock_
 record when the simulation started More...
 
- Static Protected Member Functions inherited from DPMBase
static void signalHandler (int signal)
 signal handler function. More...
 

Detailed Description

ChuteWithHopper has a hopper as inflow.

The hopper has two parts as follows to create the finite hopper walls, we take vector between two wall points in xz-plane, then rotate clockwise and make unit length.

Sketch of the hopper

A,B,C denote three points on the left and right hopper walls which are used to construct the hopper. Shift denotes the space by which the chute has to be shifted to the right such that the hopper is in the domain. Note: the wall direction has to be set separately either period of walls.

Constructor & Destructor Documentation

◆ ChuteWithHopper() [1/5]

ChuteWithHopper::ChuteWithHopper ( const Chute other)
explicit

This is a copy constructor for Chute problems.

Bug:
This copy construct is untested
Bug:
This copy construct is untested

Copy constructor with a Chute object as an argument. This constructor basically 'upgrades' the Chute object to one of the ChuteWithHopper class. NB: The copy constructor of DPMBase has to be called because the link from DPMBase to MercuryBase is virtual.

Parameters
[in]otherobject of Chute class
42  : DPMBase(other), Chute(other)
43 {
44  constructor();
45 }
void constructor()
This is the actually constructor, get called by all constructors above.
Definition: ChuteWithHopper.cc:97
Chute()
This is the default constructor. All it does is set sensible defaults.
Definition: Chute.cc:42
DPMBase()
Constructor that calls the "void constructor()".
Definition: DPMBase.cc:194

References constructor().

◆ ChuteWithHopper() [2/5]

ChuteWithHopper::ChuteWithHopper ( const Mercury3D other)
explicit

Copy constructor, converts an existing Mercury3D object into a ChuteWithHopper object.

Copy constructor with a Mercury3D object as an argument. This constructor basically 'upgrades' the Mercury3D object to one of the ChuteWithHopper class. NB: The copy constructor of DPMBase has to be called because the link from DPMBase to MercuryBase is virtual.

Parameters
[in]otherobject of Mercury3D class
55  : DPMBase(other), Chute(other)
56 {
57  constructor();
58 }

References constructor().

◆ ChuteWithHopper() [3/5]

ChuteWithHopper::ChuteWithHopper ( const MercuryBase other)
explicit

Copy constructor, converts an existing MercuryBase object into a ChuteWithHopper object.

Copy constructor with a MercuryBase object as an argument. This constructor basically 'upgrades' the MercuryBase object to one of the ChuteWithHopper class. NB: The copy constructor of DPMBase has to be called because the link from DPMBase to MercuryBase is virtual.

Parameters
[in]otherobject of MercuryBase class
68  : DPMBase(other), Chute(other)
69 {
70  constructor();
71 }

References constructor().

◆ ChuteWithHopper() [4/5]

ChuteWithHopper::ChuteWithHopper ( const DPMBase other)
explicit

Copy constructor, converts an existing DPMBase object into a ChuteWithHopper object.

Copy constructor with a DPMBase object as an argument. This constructor basically 'upgrades' the DPMBase object to one of the ChuteWithHopper class. NB: The copy constructor of DPMBase has to be called because the link from DPMBase to MercuryBase is virtual.

Parameters
[in]otherobject of DPMBase class
81  : DPMBase(other), Chute(other)
82 {
83  constructor();
84 }

References constructor().

◆ ChuteWithHopper() [5/5]

ChuteWithHopper::ChuteWithHopper ( )

This is the default constructor.

Default constructor. Calls the constructor() method.

90 {
91  constructor();
92 }

References constructor().

Member Function Documentation

◆ addHopper()

void ChuteWithHopper::addHopper ( )
protected

This creates the hopper on top of the chute, see diagram in class description for details of the points.

Creates the actual hopper and rotates it so as to fit in a geometry in which the chute is parallel to the X-axis.

Todo:
Waarom had ik deze ook al weer gecomment? IFCD: this was probably BvdH
Todo:
Why shift A by arbitrary number of 40, when isHopperCentred_ = True? NB: this is probably the same shift of 40 as happens in HopperInsertionBoundary::generateParticle(RNG) with the calculation of 'point A'. NB2: seems to be just generating a nice 'view' of the hopper (in the center of the viewer...?)
167 {
168  //hopper walls
169  //to create the finite hopper walls, we take vector between two wall points in xz-plane, then rotate clockwise and make unit length
170  // A\ /A
171  // \ / A,B,C denote three points on the left and right hopper walls which are used to construct the hopper
172  // \ / shift denotes the space by which the chute has to be shifted to the right such that the hopper is in the domain
173  // B| |B
174  // | |
175  // C| |
176  // |C
177 
178  Vec3D A, B, C, temp, normal;
179 
180  const Mdouble s = mathsFunc::sin(getChuteAngle());
181  const Mdouble c = mathsFunc::cos(getChuteAngle());
182  // height of the lowest part of the hopper (right C in diagram above) as compared to
183  // the vertical position of the start of the chute (left C in diagram above).
185 
186  // "0.5*(hopperLength_+hopperExitLength_) / tan(hopperAngle_)" is the minimum heigth of the hopper, to make sure things should flow down and not to the sides.
187  // hopperHeight_ is now an input variable
188  // hopperHeight_ = hopperLowestPoint_ + 1.1 * 0.5*(hopperLength_+hopperExitLength_) / tan(hopperAngle_);
189 
190  const Mdouble HopperCornerHeight =
193  //if (HopperCornerHeight<=0.0) { hopperHeight_ += -HopperCornerHeight + P0.getRadius(); HopperCornerHeight = P0.getRadius(); }
194 
195  // first we create the LEFT hopper wall
196 
197  // coordinates of A,B,C in (vertical parallel to flow, vertical normal to flow, horizontal) direction
199  B = Vec3D(0.0, 0.0, HopperCornerHeight);
200  C = Vec3D(0.0, 0.0, 0.0);
201 
202  // now rotate the coordinates of A,B,C to be in (x,y,z) direction
203  A = Vec3D(c * A.X - s * A.Z, 0.0, s * A.X + c * A.Z);
204  B = Vec3D(c * B.X - s * B.Z, 0.0, s * B.X + c * B.Z);
205  C = Vec3D(c * C.X - s * C.Z, 0.0, s * C.X + c * C.Z);
206 
207  // the position of A determines hopper shift and zmax
213  if (isHopperCentred_)
214  {
215  setHopperShift(-A.X + 40);
216  }
217  else
218  {
219  setHopperShift(-A.X);
220  }
221 
222  setZMax(A.Z);
223  A.X += hopperShift_;
224  B.X += hopperShift_;
225  C.X += hopperShift_;
226 
227  //This lifts the hopper a distance above the chute
228  A.Z += hopperLift_;
229  B.Z += hopperLift_;
230  C.Z += hopperLift_;
231 
232  //create a finite wall from B to A and from C to B on the left hand side
233  IntersectionOfWalls w_Left;
235  temp = B - A;
236  normal = Vec3D(temp.Z, 0.0, -temp.X) / std::sqrt(temp.getLengthSquared());
237  w_Left.addObject(normal, A);
238  temp = C - B;
239  normal = Vec3D(temp.Z, 0.0, -temp.X) / std::sqrt(temp.getLengthSquared());
240  w_Left.addObject(normal, B);
241  temp = A - C;
242  normal = Vec3D(temp.Z, 0.0, -temp.X) / std::sqrt(temp.getLengthSquared());
243  w_Left.addObject(normal, C);
245 
246  //next, do the same for the right wall
249  HopperCornerHeight);
252 
253  //This rotates the right points
254  A = Vec3D(c * A.X - s * A.Z + hopperShift_, 0.0, s * A.X + c * A.Z);
255  B = Vec3D(c * B.X - s * B.Z + hopperShift_, 0.0, s * B.X + c * B.Z);
256  C = Vec3D(c * C.X - s * C.Z + hopperShift_, 0.0, s * C.X + c * C.Z);
257 
258  //This lifts the hopper a distance above the chute
259  A.Z += hopperLift_;
260  B.Z += hopperLift_;
261  C.Z += hopperLift_;
262 
263  //create a finite wall from B to A and from C to B on the right hand side
264  IntersectionOfWalls w_Right;
265  w_Right.setSpecies(speciesHandler.getObject(0));
266  temp = A - B;
267  normal = Vec3D(temp.Z, 0.0, -temp.X) / std::sqrt(temp.getLengthSquared());
268  w_Right.addObject(normal, A);
269  temp = B - C;
270  normal = Vec3D(temp.Z, 0.0, -temp.X) / std::sqrt(temp.getLengthSquared());
271  w_Right.addObject(normal, B);
272  temp = C - A;
273  normal = Vec3D(temp.Z, 0.0, -temp.X) / std::sqrt(temp.getLengthSquared());
274  w_Right.addObject(normal, C);
275  wallHandler.copyAndAddObject(w_Right);
276 
277  setZMax(A.Z);
278 
279  // if hopperDimension_ == 2, create inclined hopper walls (like in the X-direction) also in the Y-direction.
280  // (Else, place vertical (possibly periodic) walls in Y-direction. -> not mentioned here, where is this arranged? (BvdH))
281  if (hopperDimension_ == 2)
282  {
283  //coordinates of A,B,C in (vertical parallel to flow,vertical normal to flow, horizontal) direction
284  A = Vec3D(0.0, (getYMax() - getYMin() - hopperLength_) / 2.0, hopperHeight_);
285  B = Vec3D(0.0, (getYMax() - getYMin() - hopperExitLength_) / 2.0, HopperCornerHeight);
286  C = Vec3D(0.0, (getYMax() - getYMin() - hopperExitLength_) / 2.0, 0.0);
287 
288  //now rotate the coordinates of A,B,C to be in (x,y,z) direction
289  A = Vec3D(c * A.X - s * A.Z, A.Y, s * A.X + c * A.Z);
290  B = Vec3D(c * B.X - s * B.Z, B.Y, s * B.X + c * B.Z);
291  C = Vec3D(c * C.X - s * C.Z, C.Y, s * C.X + c * C.Z);
292  // the position of A determines shift and zmax
293  A.X += hopperShift_;
294  B.X += hopperShift_;
295  C.X += hopperShift_;
296 
297  //This lifts the hopper a distance above the chute
298  A.Z += hopperLift_;
299  B.Z += hopperLift_;
300  C.Z += hopperLift_;
301 
302  //create a finite wall from B to A and from C to B
303  IntersectionOfWalls w_Back;
304  temp = B - A;
305  normal = Vec3D::cross(Vec3D(-c, 0, -s), temp) / std::sqrt(temp.getLengthSquared());
306  //normal = Vec3D(0.0,temp.Z,-temp.Y) / std::sqrt(temp.GetLength2());
307  w_Back.addObject(normal, A);
308  temp = C - B;
309  //normal = Vec3D(0.0,temp.Z,-temp.Y) / std::sqrt(temp.GetLength2());
310  normal = Vec3D::cross(Vec3D(-c, 0, -s), temp) / std::sqrt(temp.getLengthSquared());
311  w_Back.addObject(normal, B);
312  temp = A - C;
313  //normal = Vec3D(0.0,temp.Z,-temp.Y)/std::sqrt(temp.GetLength2());
314  normal = Vec3D::cross(Vec3D(-c, 0, -s), temp) / std::sqrt(temp.getLengthSquared());
315  w_Back.addObject(normal, C);
317 
318  //Now for the right y-wall
319  A = Vec3D(0.0, (getYMax() - getYMin() + hopperLength_) / 2.0, hopperHeight_);
320  B = Vec3D(0.0, (getYMax() - getYMin() + hopperExitLength_) / 2.0, HopperCornerHeight);
321  C = Vec3D(0.0, (getYMax() - getYMin() + hopperExitLength_) / 2.0, 0.0);
322 
323  //now rotate the coordinates of A,B,C to be in (x,y,z) direction
324  A = Vec3D(c * A.X - s * A.Z, A.Y, s * A.X + c * A.Z);
325  B = Vec3D(c * B.X - s * B.Z, B.Y, s * B.X + c * B.Z);
326  C = Vec3D(c * C.X - s * C.Z, C.Y, s * C.X + c * C.Z);
327  // the position of A determines shift and zmax
328  A.X += hopperShift_;
329  B.X += hopperShift_;
330  C.X += hopperShift_;
331 
332  //This lifts the hopper a distance above the chute
333  A.Z += hopperLift_;
334  B.Z += hopperLift_;
335  C.Z += hopperLift_;
336 
337  //create a finite wall from B to A and from C to B
338  IntersectionOfWalls w_Front;
339  temp = A - B;
340  normal = Vec3D::cross(Vec3D(-c, 0, -s), temp) / std::sqrt(temp.getLengthSquared());
341  //normal = Vec3D(0.0,-temp.Z,temp.Y) / std::sqrt(temp.GetLength2());
342  w_Front.addObject(normal, A);
343  temp = B - C;
344  //normal = Vec3D(0.0,-temp.Z,temp.Y) / std::sqrt(temp.GetLength2());
345  normal = Vec3D::cross(Vec3D(-c, 0, -s), temp) / std::sqrt(temp.getLengthSquared());
346  w_Front.addObject(normal, B);
347  temp = C - A;
348  //normal = Vec3D(0.0,-temp.Z,temp.Y)/std::sqrt(temp.GetLength2());
349  normal = Vec3D::cross(Vec3D(-c, 0, -s), temp) / std::sqrt(temp.getLengthSquared());
350  w_Front.addObject(normal, C);
351  wallHandler.copyAndAddObject(w_Front);
352  }
353 
354  //now shift the chute as well, i.e. apply the shift to all the fixed particles
355  // at the bottom of the chute
356  for (BaseParticle* particle : particleHandler)
357  {
358  particle->move(Vec3D(hopperShift_, 0.0, 0.0));
359  }
360 }
double Mdouble
Definition: GeneralDefine.h:34
@ A
Definition: StatisticsVector.h:42
std::enable_if<!std::is_pointer< U >::value, U * >::type copyAndAddObject(const U &object)
Creates a copy of a Object and adds it to the BaseHandler.
Definition: BaseHandler.h:379
T * getObject(const unsigned int id)
Gets a pointer to the Object at the specified index in the BaseHandler.
Definition: BaseHandler.h:613
Definition: BaseParticle.h:54
Mdouble hopperLength_
Dimension of the hopper in vertical direction.
Definition: ChuteWithHopper.h:235
Mdouble hopperExitHeight_
Dimension of the hopper exit in vertical direction.
Definition: ChuteWithHopper.h:251
Mdouble hopperHeight_
Dimension of the hopper in horizontal direction.
Definition: ChuteWithHopper.h:239
Mdouble hopperExitLength_
Dimension of the hopper exit in vertical direction.
Definition: ChuteWithHopper.h:247
unsigned int hopperDimension_
This is the dimension of the hopper, my default it is one dimensional and hence does not have side wa...
Definition: ChuteWithHopper.h:272
Mdouble hopperLowestPoint_
The NEGATIVE z coordinate of the right C point (when the left C point is in the origin)
Definition: ChuteWithHopper.h:284
Mdouble hopperShift_
The x position where the Chute starts (defined as the beginning of the hopper)
Definition: ChuteWithHopper.h:255
Mdouble hopperLift_
This is the vertical distance the chute is lifted above the plane.
Definition: ChuteWithHopper.h:268
bool isHopperCentred_
If this flag is set, the hopper will be constructed in the xy-center of the domain,...
Definition: ChuteWithHopper.h:263
void setHopperShift(Mdouble hopperShift)
Sets the shift in X-direction of the whole setup after rotation.
Definition: ChuteWithHopper.cc:579
Mdouble getChuteAngle() const
Returns the chute angle (in radians)
Definition: Chute.cc:807
SpeciesHandler speciesHandler
A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc.
Definition: DPMBase.h:1427
Mdouble getYMin() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin.
Definition: DPMBase.h:632
WallHandler wallHandler
An object of the class WallHandler. Contains pointers to all the walls created.
Definition: DPMBase.h:1447
ParticleHandler particleHandler
An object of the class ParticleHandler, contains the pointers to all the particles created.
Definition: DPMBase.h:1437
void setZMax(Mdouble newZMax)
Sets the value of ZMax, the upper bound of the problem domain in the z-direction.
Definition: DPMBase.cc:1217
Mdouble getYMax() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax.
Definition: DPMBase.h:638
A IntersectionOfWalls is convex polygon defined as an intersection of InfiniteWall's.
Definition: IntersectionOfWalls.h:59
void addObject(Vec3D normal, Vec3D point)
Adds a wall to the set of infinite walls, given a normal vector pointing into the wall (i....
Definition: IntersectionOfWalls.cc:138
void setSpecies(const ParticleSpecies *species)
sets species of subwalls as well
Definition: IntersectionOfWalls.cc:72
Definition: Vector.h:51
Mdouble Z
Definition: Vector.h:66
static Mdouble getLengthSquared(const Vec3D &a)
Calculates the squared length of a Vec3D: .
Definition: Vector.h:332
static Vec3D cross(const Vec3D &a, const Vec3D &b)
Calculates the cross product of two Vec3D: .
Definition: Vector.cc:163
Mdouble X
the vector components
Definition: Vector.h:66
Mdouble cos(Mdouble x)
Definition: ExtendedMath.cc:64
T tan(T x)
Definition: ExtendedMath.h:178
Mdouble sin(Mdouble x)
Definition: ExtendedMath.cc:44

References A, IntersectionOfWalls::addObject(), BaseHandler< T >::copyAndAddObject(), mathsFunc::cos(), Vec3D::cross(), Chute::getChuteAngle(), Vec3D::getLengthSquared(), BaseHandler< T >::getObject(), DPMBase::getYMax(), DPMBase::getYMin(), hopperDimension_, hopperExitHeight_, hopperExitLength_, hopperHeight_, hopperLength_, hopperLift_, hopperLowestPoint_, hopperShift_, isHopperCentred_, DPMBase::particleHandler, setHopperShift(), IntersectionOfWalls::setSpecies(), DPMBase::setZMax(), mathsFunc::sin(), DPMBase::speciesHandler, mathsFunc::tan(), DPMBase::wallHandler, Vec3D::X, Vec3D::Y, and Vec3D::Z.

Referenced by setupInitialConditions().

◆ constructor()

void ChuteWithHopper::constructor ( )
private

This is the actually constructor, get called by all constructors above.

constructor METHOD, which sets all ChuteWithHopper properties to something sensible.

98 {
100  hopperLift_ = 0.0;
101  setHopper(0.01, 0.01, 60.0, 0.08, 0.04);
102  hopperShift_ = 0.0;
103  hopperDimension_ = 1;
105 
107  isHopperCentred_ = false;
108 
109 }
void setHopper(Mdouble exitLength, Mdouble exitHeight, Mdouble angle, Mdouble length, Mdouble height)
Sets the hopper's geometrical properties.
Definition: ChuteWithHopper.cc:389
Mdouble hopperFillingPercentage_
This is which percentage of the hopper is used for creating new partices;.
Definition: ChuteWithHopper.h:280
Mdouble hopperLowerFillingHeight_
Relative height (in [0,1)) above which the hopper is replenished with new particles.
Definition: ChuteWithHopper.h:259
bool isHopperAlignedWithBottom_
This is the flag, which sets if the chute bottom is aligned with the hopper, by default it is.
Definition: ChuteWithHopper.h:276

References hopperDimension_, hopperFillingPercentage_, hopperLift_, hopperLowerFillingHeight_, hopperShift_, isHopperAlignedWithBottom_, isHopperCentred_, and setHopper().

Referenced by ChuteWithHopper().

◆ getChuteLength()

Mdouble ChuteWithHopper::getChuteLength ( ) const

Allows chute length to be accessed.

Todo:
this hides the non-virtual function Chute::getChuteLength

Returns the length of the chute. The start of the view, at x = 0, is hopperShift_ to the left of the start of the chute.

Returns
the hopper length
532 {
533  return getXMax() - hopperShift_;
534 }
Mdouble getXMax() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax.
Definition: DPMBase.h:626

References DPMBase::getXMax(), and hopperShift_.

Referenced by AngleOfRepose::actionsBeforeTimeStep(), AngleOfRepose::create_inflow_particle(), main(), and AngleOfRepose::setupInitialConditions().

◆ getHopperAngle()

Mdouble ChuteWithHopper::getHopperAngle ( ) const

Returns the angle of the hopper entrance relative to the vertical.

Returns the hopper angle (relative to the vertical) in RADIANS

626 {
627  return hopperAngle_;
628 }
Mdouble hopperAngle_
Angle between the two pieces of the hopper walls.
Definition: ChuteWithHopper.h:243

References hopperAngle_.

Referenced by SegregationWithHopper::create_inflow_particle().

◆ getHopperDimension()

unsigned int ChuteWithHopper::getHopperDimension ( ) const

Returns whether the hopper has vertical (1) or inclined (2) walls in Y-direction.

Returns the hopperDimension_ property, which determines whether the hopper entrance walls in the Y-direction are inclined (2) or vertical (1).

689 {
690  return hopperDimension_;
691 }

References hopperDimension_.

◆ getHopperExitHeight()

Mdouble ChuteWithHopper::getHopperExitHeight ( ) const

Returns the height of the lowest hopper point above the chute.

Returns the (vertical) height of the lowest point of the hopper (hopperLowestPoint_) above the (inclined) chute bottom

659 {
660  return hopperExitHeight_;
661 }

References hopperExitHeight_.

◆ getHopperExitLength()

Mdouble ChuteWithHopper::getHopperExitLength ( ) const

Returns the width of the hopper exit.

Returns the width of the (rectangular) hopper exit

642 {
643  return hopperExitLength_;
644 }

References hopperExitLength_.

Referenced by SegregationWithHopper::create_inflow_particle().

◆ getHopperFillingPercentage()

Mdouble ChuteWithHopper::getHopperFillingPercentage ( ) const

Returns the vertical percentage of the hopper insertion boundary which is filled.

Returns the percentage of the height of the hopper insertion boundary up to which it should be filled. The part to be filled reaches from the top of the hopper down to {fillPercent * (top - 'position A')}. See also the documentation of the HopperInsertionBoundary class.

680 {
682 }

References hopperFillingPercentage_.

◆ getHopperHeight()

Mdouble ChuteWithHopper::getHopperHeight ( ) const

Returns the height of the hopper relative to the chute start.

Returns the (vertical) height of the hopper relative to the start of the chute

650 {
651  return hopperHeight_;
652 }

References hopperHeight_.

Referenced by SegregationWithHopper::create_inflow_particle().

◆ getHopperLength()

Mdouble ChuteWithHopper::getHopperLength ( ) const

Returns the width of the hopper entrance.

Returns the horizontal width of the hopper input (at the top of the hopper)

634 {
635  return hopperLength_;
636 }

References hopperLength_.

Referenced by SegregationWithHopper::create_inflow_particle().

◆ getHopperLift()

Mdouble ChuteWithHopper::getHopperLift ( ) const

Returns the hopper's lift above the chute bottom plane.

Returns the amount the hopper is lifted above the X-axis (in Z-direction, i.e. AFTER rotation of the system to have the chute parallel to the X-axis)

707 {
708  return hopperLift_;
709 }

References hopperLift_.

◆ getHopperLowestPoint()

Mdouble ChuteWithHopper::getHopperLowestPoint ( ) const

Returns the vertical distance of the lowest hopper point relative to the start of the chute.

373 {
374  return hopperLowestPoint_;
375 }

References hopperLowestPoint_.

Referenced by setHopper().

◆ getHopperShift()

Mdouble ChuteWithHopper::getHopperShift ( ) const

Returns the shift in X-direction of the whole setup after rotation.

Returns the distance the whole setup is shifted in the X-direction relative from the position at which the start of the CHUTE is at X = 0.

716 {
717  return hopperShift_;
718 }

References hopperShift_.

◆ getIsHopperCentred()

bool ChuteWithHopper::getIsHopperCentred ( ) const

Returns whether the setup is shifted another 40 units in X-direction.

Returns the isHopperCentered_ property, which determines whether the whole setup is shifted another 40 units of length in the X-direction. See also ChuteWithHopper::addHopper().

Returns
if TRUE, the whole setup is shifted 40 units of length towards the positive X-direction.
669 {
670  return isHopperCentred_;
671 }

References isHopperCentred_.

◆ getMaximumVelocityInducedByGravity()

Mdouble ChuteWithHopper::getMaximumVelocityInducedByGravity ( ) const

Returns the theoretical maximum particle velocity due to gravity.

Returns the maximum velocity a particle could theoretically reach by gravity, would it fall from the top of the hopper straight to the bottom of the system.

Returns
The maximum velocity possible due to gravity
500 {
502 
503  return std::sqrt(2.0 * getGravity().getLength() * height);
504 }
Vec3D getGravity() const
Returns the gravitational acceleration.
Definition: DPMBase.cc:1391

References Chute::getChuteAngle(), DPMBase::getGravity(), DPMBase::getXMax(), hopperHeight_, hopperShift_, and mathsFunc::sin().

Referenced by getTimeStepRatio().

◆ getTimeStepRatio()

Mdouble ChuteWithHopper::getTimeStepRatio ( ) const

Returns smallest particle radius over maximum gravitational velocity.

Returns the ratio of minimum particle radius over maximum distance travelled per time step due to gravitational acceleration, and returns a warning when this is smaller then a certain threshold.

Todo:
Consider generalising this method by implementing it in the MercuryBase class.
Author
BvdH NB: this method is used in ChuteWithHopper::setupInitialConditions().
514 {
516  const Mdouble rmin = getMinInflowParticleRadius();
517 
518  if (rmin / dx < 10.)
519  logger(WARN,
520  "[ChuteWithHopper::getTimeStepRatio()] ratio of minimum particle radius over max distance travelled per time step due to gravity is only %; consider reducing the time step size!",
521  rmin / dx);
522 
523  return rmin / dx;
524 }
Logger< MERCURYDPM_LOGLEVEL > logger("MercuryKernel")
Definition of different loggers with certain modules. A user can define its own custom logger here.
@ WARN
Mdouble getMaximumVelocityInducedByGravity() const
Returns the theoretical maximum particle velocity due to gravity.
Definition: ChuteWithHopper.cc:499
Mdouble getMinInflowParticleRadius() const
returns the minimum radius of inflow particles
Definition: Chute.cc:938
Mdouble getTimeStep() const
Returns the simulation time step.
Definition: DPMBase.cc:1250

References getMaximumVelocityInducedByGravity(), Chute::getMinInflowParticleRadius(), DPMBase::getTimeStep(), logger, and WARN.

Referenced by main(), and setupInitialConditions().

◆ read()

void ChuteWithHopper::read ( std::istream &  is,
ReadOptions  opt = ReadOptions::ReadAll 
)
overridevirtual

Reads setup properties from an istream.

Reads the setup properties from an istream

Parameters
[in,out]isthe istream

Reimplemented from Chute.

599 {
600  Chute::read(is,opt);
603 }
void read(std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
Reads all chute properties from an istream.
Definition: Chute.cc:139

References hopperAngle_, hopperExitHeight_, hopperExitLength_, hopperHeight_, hopperLength_, hopperShift_, and Chute::read().

◆ readNextArgument()

bool ChuteWithHopper::readNextArgument ( int &  i,
int  argc,
char argv[] 
)
overridevirtual

Reads setup properties from a string.

this reads parameters from a string.

Parameters
[in]ithe index of the input parameter to be read
[in]argcnumber of input parameters
[in]argv[]pointer to the (first character of the) actual string

Reimplemented from Chute.

744 {
745  if (!strcmp(argv[i], "-hopperLength"))
746  {
747  hopperLength_ = (atof(argv[i + 1]));
748  }
749  else if (!strcmp(argv[i], "-hopperHeight"))
750  {
751  hopperHeight_ = (atof(argv[i + 1]));
752  }
753  else if (!strcmp(argv[i], "-hopperAngle"))
754  {
755  hopperAngle_ = (atof(argv[i + 1]));
756  }
757  else if (!strcmp(argv[i], "-hopperExitLength"))
758  {
759  hopperExitLength_ = (atof(argv[i + 1]));
760  }
761  else if (!strcmp(argv[i], "-hopperExitHeight"))
762  {
763  hopperExitHeight_ = (atof(argv[i + 1]));
764  }
765  else if (!strcmp(argv[i], "-hopperLowerFillingHeight_"))
766  {
767  hopperLowerFillingHeight_ = (atof(argv[i + 1]));
768  }
769  else if (!strcmp(argv[i], "-isHopperCentred"))
770  {
771  isHopperCentred_ = static_cast<bool>(atoi(argv[i + 1]));
772  }
773  else if (!strcmp(argv[i], "-alignBase"))
774  {
775  isHopperAlignedWithBottom_ = static_cast<bool>(atoi(argv[i + 1]));
776  }
777  else if (!strcmp(argv[i], "-shift"))
778  {
779  hopperShift_ = (atof(argv[i + 1]));
780  }
781  else if (!strcmp(argv[i], "-lift"))
782  {
783  hopperLift_ = (atof(argv[i + 1]));
784  }
785  else
786  return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
787  return true; //returns true if argv[i] is found
788 }
bool readNextArgument(int &i, int argc, char *argv[]) override
This method can be used for reading object properties from a string.
Definition: Chute.cc:555
const std::complex< Mdouble > i
Definition: ExtendedMath.h:51

References hopperAngle_, hopperExitHeight_, hopperExitLength_, hopperHeight_, hopperLength_, hopperLift_, hopperLowerFillingHeight_, hopperShift_, constants::i, isHopperAlignedWithBottom_, isHopperCentred_, and Chute::readNextArgument().

◆ setChuteLength()

void ChuteWithHopper::setChuteLength ( Mdouble  chuteLength)
overridevirtual

sets xMax to chuteLength+hopperlength_, and thus specifies the length off the runoff chute

Sets xMax_ such that the total chute length matches the argument.

Parameters
[in]chuteLengthThe chute length according to which xMax is to be adapted

Reimplemented from Chute.

542 {
543  if (chuteLength >= 0.0)
544  {
545  setXMax(chuteLength + hopperShift_);
546  setXMin(0.0);
547  }
548  else
549  {
550  logger(WARN,
551  "[ChuteWithHopper::setChuteLength()] Chute length unchanged, value must be greater than or equal to zero");
552  }
553 }
void setXMax(Mdouble newXMax)
Sets the value of XMax, the upper bound of the problem domain in the x-direction.
Definition: DPMBase.cc:1165
void setXMin(Mdouble newXMin)
Sets the value of XMin, the lower bound of the problem domain in the x-direction.
Definition: DPMBase.cc:1010

References hopperShift_, logger, DPMBase::setXMax(), DPMBase::setXMin(), and WARN.

Referenced by AngleOfRepose::AngleOfRepose(), and main().

◆ setHopper()

void ChuteWithHopper::setHopper ( Mdouble  exitLength,
Mdouble  exitHeight,
Mdouble  angle,
Mdouble  length,
Mdouble  height 
)

Sets the hopper's geometrical properties.

Sets all the geometrical properties of the hopper at once

Parameters
[in]ExitLengthHorizontal width of the (rectangular) hopper exit
[in]ExitHeightThe vertical position of the lowest point of the right side of the hopper relative to the chute bottom
[in]AngleThe angle of the hopper inlet, relative to the vertical (in DEGREES)
[in]LengthHorizontal width of the hopper entrance (i.e., at the top of the hopper)
[in]HeightThe (vertical) height of the hopper relative to the start of the chute
Todo:
: check whether hopperCornerHeight >=0, if not change hopperangle, line 105, I do not yet understand what the criteria is...
390 {
391  // hopperCornerHeight: helper variable, just here to check some things
392  const Mdouble hopperCornerHeight =
393  height - 0.5 * (length - exitLength) / mathsFunc::tan(angle * constants::pi / 180.0);
394 
395  if (exitLength >= 0.0)
396  {
397  hopperExitLength_ = exitLength;
398  }
399  else
400  {
401  logger(ERROR, "[ChuteWithHopper::setHopper()] Hopper exit length must be greater than or equal to zero");
402  exit(-1);
403  }
404 
405  // hopperExitHeight_
406  if (exitHeight < 0.0)
407  {
408  logger(ERROR, "[ChuteWithHopper::setHopper()] Hopper exit height must be greater than or equal to zero");
409  exit(-1);
410  }
411  else if (exitHeight > hopperCornerHeight + mathsFunc::tan(getChuteAngle()) * exitLength)
412  {
413  logger(ERROR,
414  "[ChuteWithHopper::setHopper()] Hopper exit height (%) may not exceed height of hopper corner above chute bottom (%)",
415  exitHeight, hopperCornerHeight + mathsFunc::tan(getChuteAngle()) * exitLength);
416  exit(-1);
417  }
418  else //(exitHeight >= 0.0) /// \todo write check: exitHeight may NOT exceed vertical distance between chute base and hopper corner!
419  {
420  hopperExitHeight_ = exitHeight;
421  }
422 
424 
425  if (angle > 0.0 && angle < 90.0)
426  {
427  hopperAngle_ = angle * constants::pi / 180.0;
428  }
429  else
430  {
431  logger(ERROR, "[ChuteWithHopper::setHopper()] Hopper angle must in (0,90)");
432  exit(-1);
433  }
434 
435  if (length > exitLength)
436  {
437  hopperLength_ = length;
438  }
439  else
440  {
441  logger(ERROR, "[ChuteWithHopper::setHopper()] Hopper length must be greater than exit length");
442  exit(-1);
443  }
444 
445  // check hopper 'corner height', i.e. the vertical position of point 'B' as compared to the start of the hopper
446  // Mdouble hopperCornerHeight = height - 0.5 * (length - exitLength) / std::tan(hopperAngle_ * constants::pi / 180.0);
447  if (hopperCornerHeight <= 0.0)
448  {
449  // hopperHeight_ += -hopperCornerHeight + problem.getMaxInflowParticleRadius();
450  // hopperCornerHeight = problem.getMaxInflowParticleRadius();
451  logger(ERROR,
452  "[ChuteWithHopper::setHopper()] height of hopper corner (%) may not be below 0. Increase hopper height to fix.",
453  hopperCornerHeight);
454  exit(-1);
455  }
456  const Mdouble heightCompare = (getHopperLowestPoint() +
458 
459  logger(VERBOSE, " ");
460  logger(VERBOSE, "[ChuteWithHopper::setHopper()] Setting the following hopper geometrical properties:");
461  logger(VERBOSE, " hopperLowestPoint_: %, ", getHopperLowestPoint());
462  logger(VERBOSE, " hopperLength_: %, ", hopperLength_);
463  logger(VERBOSE, " hopperExitLength_: %, ", hopperExitLength_);
464  logger(VERBOSE, " hopperAngle_: %, ", hopperAngle_);
465  logger(VERBOSE, " height: %, ", height);
466  logger(VERBOSE, " comparing height: % ", heightCompare);
467  logger(VERBOSE, " ");
468 
469  //This a semi-ugly fix to check whether height>=Heightcompare and does not take into account rounding errors
470  if ((height - heightCompare) > -1e-6 * heightCompare)
471  {
472  hopperHeight_ = height;
473  }
474  else
475  {
476  logger(ERROR,
477  "[ChuteWithHopper::setHopper()] For these settings, hopper height must be greater then or equal to %, see drawing",
478  heightCompare);
479  exit(-1);
481  }
482 
483  logger(VERBOSE, " ");
484  logger(VERBOSE, "[ChuteWithHopper::setHopper()] Hopper geometry: ");
485  logger(VERBOSE, "hopperHeight_: \t %", hopperHeight_);
486  logger(VERBOSE, "hopperExitLength_: \t %", hopperExitLength_);
487  logger(VERBOSE, "hopperExitHeight_: \t %", hopperExitHeight_);
488  logger(VERBOSE, "hopperAngle_: \t %", hopperAngle_);
489  logger(VERBOSE, "hopperLength_: \t %", hopperLength_);
490  logger(VERBOSE, " ");
491 
492 }
@ ERROR
@ VERBOSE
Mdouble getHopperLowestPoint() const
Returns the vertical distance of the lowest hopper point relative to the start of the chute.
Definition: ChuteWithHopper.cc:372
void setHopperLowestPoint(Mdouble hopperLowestPoint)
Sets the vertical distance of the lowest hopper point relative to the start of the chute.
Definition: ChuteWithHopper.cc:367
const Mdouble pi
Definition: ExtendedMath.h:45

References ERROR, Chute::getChuteAngle(), getHopperLowestPoint(), hopperAngle_, hopperExitHeight_, hopperExitLength_, hopperHeight_, hopperLength_, logger, constants::pi, setHopperLowestPoint(), mathsFunc::tan(), and VERBOSE.

Referenced by constructor(), and main().

◆ setHopperDimension()

void ChuteWithHopper::setHopperDimension ( unsigned int  hopperDimension)

Sets whether the hopper should have vertical (1) or inclined (2) walls in Y-direction.

Sets the hopperDimension_ property, which determines whether the hopper entrance walls in the Y-direction are inclined (2) or vertical (1).

725 {
726  hopperDimension_ = hopperDimension;
727 }

References hopperDimension_.

Referenced by main().

◆ setHopperFillingPercentage()

void ChuteWithHopper::setHopperFillingPercentage ( Mdouble  hopperFillingPercentage)

Sets the hopper filling percentage.

Sets the hopper filling percentage. See also the documentation of the HopperInsertionBoundary class.

Parameters
[in]hopperFillingPercentagePercentage of the height of the hopper insertion boundary up to which it should be filled. The part to be filled reaches from the top of the hopper down to {hopperFillingPercentage * (top - 'position A')}.
119 {
120  hopperFillingPercentage_ = hopperFillingPercentage;
121 }

References hopperFillingPercentage_.

Referenced by main().

◆ setHopperLift()

void ChuteWithHopper::setHopperLift ( Mdouble  hopperLift)

This lifts the hopper above the plane of the chute (after rotation)

Sets the amount the hopper is lifted above the X-axis (in Z-direction, i.e. AFTER rotation of the system to have the chute parallel to the X-axis)

698 {
699  hopperLift_ = hopperLift;
700 }

References hopperLift_.

Referenced by main().

◆ setHopperLowerFillingHeight()

void ChuteWithHopper::setHopperLowerFillingHeight ( Mdouble  hopperLowerFillingHeight)

Sets the height above which the hopper is filled with new particles.

Sets the relative height (in [0,1)) above which the hopper is replenished with new particles

570 {
571  hopperLowerFillingHeight_ = hopperLowerFillingHeight;
572 }

References hopperLowerFillingHeight_.

Referenced by main().

◆ setHopperLowestPoint()

void ChuteWithHopper::setHopperLowestPoint ( Mdouble  hopperLowestPoint)

Sets the vertical distance of the lowest hopper point relative to the start of the chute.

Sets the height difference between left hopper bottom (where the chute starts) and right hopper bottom (which 'hovers' above the chute).

Parameters
[in]hopperLowestPointthe lowest point of the right side of the hopper
368 {
369  hopperLowestPoint_ = hopperLowestPoint;
370 }

References hopperLowestPoint_.

Referenced by setHopper().

◆ setHopperShift()

void ChuteWithHopper::setHopperShift ( Mdouble  hopperShift)

Sets the shift in X-direction of the whole setup after rotation.

Sets the distance the whole setup is shifted in the X-direction relative from the position at which the start of the CHUTE is at X = 0.

Parameters
[in]hopperShiftThe hopper shift to be set
580 {
581  if (hopperShift >= 0.0)
582  {
583  //keeps the ChuteLength constant
584  setXMax(getXMax() + hopperShift - hopperShift_);
585  hopperShift_ = hopperShift;
586  }
587  else
588  {
589  logger(WARN,
590  "[ChuteWithHopper::setHopperShift()] Shift length unchanged, value must be greater than or equal to zero");
591  }
592 }

References DPMBase::getXMax(), hopperShift_, logger, DPMBase::setXMax(), and WARN.

Referenced by addHopper().

◆ setIsHopperAlignedWithBottom()

void ChuteWithHopper::setIsHopperAlignedWithBottom ( bool  isHopperAlignedWithBottom)

Sets the alignment of hopper with chute bottom.

This sets the flag, which determines if the chute bottom is aligned with the hopper

733 {
734  isHopperAlignedWithBottom_ = isHopperAlignedWithBottom;
735 }

References isHopperAlignedWithBottom_.

◆ setIsHopperCentred()

void ChuteWithHopper::setIsHopperCentred ( bool  isHopperCentred)

Sets an extra shift in X-direction of the whole system.

Sets the isHopperCentered_ property, which determines whether the whole setup is shifted another 40 units of length in the X-direction. See also ChuteWithHopper::addHopper().

Parameters
[in]isHopperCentredif TRUE, the whole setup is shifted 40 units of length towards the positive X-direction.
562 {
563  isHopperCentred_ = isHopperCentred;
564 }

References isHopperCentred_.

Referenced by main().

◆ setupInitialConditions()

void ChuteWithHopper::setupInitialConditions ( )
overridevirtual

Sets up the initial conditions for the problem.

Sets up the problem initial conditions:

  1. Creates chute side walls
  2. Creates a hopper insertion boundary
  3. Creates a chute bottom
  4. Creates a hopper at the start of the chute

Reimplemented from Chute.

131 {
132 
133  // check time step ratio
135 
136  // create chute side walls (either periodic or solid, based on (the inherited)
137  // boolean Chute::isChutePeriodic_ data member).
138  setupSideWalls();
139 
140  // create insertion boundary for the hopper and set a fill percentage
143 
144  PSD psd;
146 
148  b1.set(p1, getMaxFailed(), getYMin(), getYMax(), getChuteAngle(),
151  b1.setPSD(psd);
153  setInsertionBoundary(b1Added);
154 
155  // create the chute bottom
156  createBottom();
157 
158  // create the hopper
159  addHopper();
160 }
void setSpecies(const ParticleSpecies *species)
Definition: BaseParticle.cc:818
Mdouble getTimeStepRatio() const
Returns smallest particle radius over maximum gravitational velocity.
Definition: ChuteWithHopper.cc:513
void addHopper()
This creates the hopper on top of the chute, see diagram in class description for details of the poin...
Definition: ChuteWithHopper.cc:166
Mdouble getFixedParticleRadius() const
Returns the particle radius of the fixed particles which constitute the (rough) chute bottom.
Definition: Chute.cc:671
Mdouble getMaxInflowParticleRadius() const
Returns the maximum radius of inflow particles.
Definition: Chute.cc:947
void setInsertionBoundary(InsertionBoundary *insertionBoundary)
Sets the chute insertion boundary.
Definition: Chute.cc:1078
virtual void createBottom()
Creates the chute bottom, which can be either flat or one of three flavours of rough.
Definition: Chute.cc:323
unsigned int getMaxFailed() const
Returns the number of times a particle will be tried to be added to the insertion boundary.
Definition: Chute.cc:837
void setupSideWalls()
Creates chute side walls (either solid or periodic)
Definition: Chute.cc:288
BoundaryHandler boundaryHandler
An object of the class BoundaryHandler which concerns insertion and deletion of particles into or fro...
Definition: DPMBase.h:1452
Inherits from InsertionBoundary Some images are useful to better understand the structure of both the...
Definition: HopperInsertionBoundary.h:49
void set(std::vector< BaseParticle * > particleToCopy, unsigned int maxFailed, double yMin, double yMax, double chuteAngle, double fixedParticleRadius, bool isHopperCentred_, int hopperDim, double hopperAngle, double hopperLength, double hopperExitLength, double hopperHeight, double lift, double fillPercent)
Sets all boundary properties at once.
Definition: HopperInsertionBoundary.cc:117
Boundary structure for boundaries used for insertion of particles.
Definition: InsertionBoundary.h:50
void setPSD(const PSD psd)
Sets the range of particle radii that may be generated from a user defined PSD.
Definition: InsertionBoundary.cc:675
Contains a vector with radii and probabilities of a user defined particle size distribution (PSD)
Definition: PSD.h:65
void setDistributionUniform(Mdouble radMin, Mdouble radMax, int numberOfBins)
create a PSD vector for a uniform distribution.
Definition: PSD.cc:299
A spherical particle is the most simple particle used in MercuryDPM.
Definition: SphericalParticle.h:37

References addHopper(), DPMBase::boundaryHandler, BaseHandler< T >::copyAndAddObject(), Chute::createBottom(), Chute::getChuteAngle(), Chute::getFixedParticleRadius(), Chute::getMaxFailed(), Chute::getMaxInflowParticleRadius(), Chute::getMinInflowParticleRadius(), BaseHandler< T >::getObject(), getTimeStepRatio(), DPMBase::getYMax(), DPMBase::getYMin(), hopperAngle_, hopperDimension_, hopperExitLength_, hopperFillingPercentage_, hopperHeight_, hopperLength_, hopperLift_, isHopperCentred_, HopperInsertionBoundary::set(), PSD::setDistributionUniform(), Chute::setInsertionBoundary(), InsertionBoundary::setPSD(), BaseParticle::setSpecies(), Chute::setupSideWalls(), and DPMBase::speciesHandler.

Referenced by Vreman::setupInitialConditions(), and AirySavageHutter::setupInitialConditions().

◆ write()

void ChuteWithHopper::write ( std::ostream &  os,
bool  writeAllParticles = true 
) const
overridevirtual

Writes setup properties to an ostream.

Writes object's properties to an ostream

Parameters
[in]osthe ostream
[in]writeAllParticlesIf TRUE, the properties of ALL particles in the particleHandler are written to the ostream. If FALSE, only the properties of the first two particles in the handler are written to the ostream (see DPMBase::write(std::ostream& os, bool writeAllParticles)).

Reimplemented from Chute.

616 {
617  Chute::write(os, writeAllParticles);
618  os << hopperExitLength_ << " " << hopperExitHeight_ << " " << hopperLength_
619  << " " << hopperAngle_ << " " << hopperHeight_ << " " << hopperShift_ << " " << '\n';
620 }
void write(std::ostream &os, bool writeAllParticles=true) const override
This function writes the Chute properties to an ostream, and adds the properties of ALL chute particl...
Definition: Chute.cc:206

References hopperAngle_, hopperExitHeight_, hopperExitLength_, hopperHeight_, hopperLength_, hopperShift_, and Chute::write().

Referenced by AirySavageHutter::actionsOnRestart(), main(), and AngleOfRepose::setupInitialConditions().

Member Data Documentation

◆ hopperAngle_

Mdouble ChuteWithHopper::hopperAngle_
private

Angle between the two pieces of the hopper walls.

Referenced by getHopperAngle(), read(), readNextArgument(), setHopper(), setupInitialConditions(), and write().

◆ hopperDimension_

unsigned int ChuteWithHopper::hopperDimension_
private

This is the dimension of the hopper, my default it is one dimensional and hence does not have side wall.

Referenced by addHopper(), constructor(), getHopperDimension(), setHopperDimension(), and setupInitialConditions().

◆ hopperExitHeight_

Mdouble ChuteWithHopper::hopperExitHeight_
private

Dimension of the hopper exit in vertical direction.

Referenced by addHopper(), getHopperExitHeight(), read(), readNextArgument(), setHopper(), and write().

◆ hopperExitLength_

Mdouble ChuteWithHopper::hopperExitLength_
private

Dimension of the hopper exit in vertical direction.

Referenced by addHopper(), getHopperExitLength(), read(), readNextArgument(), setHopper(), setupInitialConditions(), and write().

◆ hopperFillingPercentage_

Mdouble ChuteWithHopper::hopperFillingPercentage_
private

This is which percentage of the hopper is used for creating new partices;.

Referenced by constructor(), getHopperFillingPercentage(), setHopperFillingPercentage(), and setupInitialConditions().

◆ hopperHeight_

Mdouble ChuteWithHopper::hopperHeight_
private

◆ hopperLength_

Mdouble ChuteWithHopper::hopperLength_
private

Dimension of the hopper in vertical direction.

Referenced by addHopper(), getHopperLength(), read(), readNextArgument(), setHopper(), setupInitialConditions(), and write().

◆ hopperLift_

Mdouble ChuteWithHopper::hopperLift_
private

This is the vertical distance the chute is lifted above the plane.

Referenced by addHopper(), constructor(), getHopperLift(), readNextArgument(), setHopperLift(), and setupInitialConditions().

◆ hopperLowerFillingHeight_

Mdouble ChuteWithHopper::hopperLowerFillingHeight_
private

Relative height (in [0,1)) above which the hopper is replenished with new particles.

Referenced by constructor(), readNextArgument(), and setHopperLowerFillingHeight().

◆ hopperLowestPoint_

Mdouble ChuteWithHopper::hopperLowestPoint_
private

The NEGATIVE z coordinate of the right C point (when the left C point is in the origin)

Referenced by addHopper(), getHopperLowestPoint(), and setHopperLowestPoint().

◆ hopperShift_

Mdouble ChuteWithHopper::hopperShift_
private

The x position where the Chute starts (defined as the beginning of the hopper)

Referenced by addHopper(), constructor(), getChuteLength(), getHopperShift(), getMaximumVelocityInducedByGravity(), read(), readNextArgument(), setChuteLength(), setHopperShift(), and write().

◆ isHopperAlignedWithBottom_

bool ChuteWithHopper::isHopperAlignedWithBottom_
private

This is the flag, which sets if the chute bottom is aligned with the hopper, by default it is.

Referenced by constructor(), readNextArgument(), and setIsHopperAlignedWithBottom().

◆ isHopperCentred_

bool ChuteWithHopper::isHopperCentred_
private

If this flag is set, the hopper will be constructed in the xy-center of the domain, and not next to the xmin-domain boundary; by default off.

Referenced by addHopper(), constructor(), getIsHopperCentred(), readNextArgument(), setIsHopperCentred(), and setupInitialConditions().


The documentation for this class was generated from the following files: