revision: v0.14
SilbertPeriodic Class Reference

#include <GlasPeriodic.h>

+ Inheritance diagram for SilbertPeriodic:

Public Member Functions

 SilbertPeriodic ()
 
virtual void createBaseSpecies ()
 
void set_study (int study_num)
 
void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (Mdouble new_)
 
Mdouble get_H ()
 
void printTime () const override
 Displays the current simulation time and the maximum simulation duration. More...
 
int getNCreated () const
 
void increaseNCreated ()
 
 SilbertPeriodic ()
 
Mdouble getSlidingFrictionCoefficientBottom ()
 
void setSlidingFrictionCoefficientBottom (Mdouble new_)
 
virtual void createBaseSpecies ()
 
void set_study ()
 
void set_study (int study_num)
 
void set_study (std::vector< int > study_num)
 
void actionsBeforeTimeStep ()
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions ()
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (double new_)
 
double get_H ()
 
void printTime () const
 Displays the current simulation time and the maximum simulation duration. More...
 
bool readNextArgument (int &i, int argc, char *argv[])
 Interprets the i^th command-line argument. More...
 
int getNCreated () const
 
void increaseNCreated ()
 
 SilbertPeriodic ()
 
void fix_hgrid ()
 
double getSlidingFrictionCoefficientBottom ()
 
void setSlidingFrictionCoefficientBottom (double new_)
 
void createBaseSpecies ()
 
void set_study ()
 
void set_study (int study_num)
 
void set_study (vector< int > study_num)
 
void actionsBeforeTimeStep ()
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions ()
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (double new_)
 
double get_H ()
 
void printTime ()
 
int readNextArgument (unsigned int &i, unsigned int &argc, char *argv[])
 
 SilbertPeriodic ()
 
void fix_hgrid ()
 
Mdouble getSlidingFrictionCoefficientBottom ()
 
void setSlidingFrictionCoefficientBottom (Mdouble new_)
 
virtual void createBaseSpecies ()
 
void set_study ()
 
void set_study (int study_num)
 
void set_study (vector< int > study_num)
 
void actionsBeforeTimeStep ()
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions ()
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (Mdouble new_)
 
Mdouble get_H ()
 
void printTime ()
 
int readNextArgument (unsigned int &i, unsigned int argc, char *argv[])
 
 SilbertPeriodic ()
 
Mdouble getSlidingFrictionCoefficientBottom ()
 
void setSlidingFrictionCoefficientBottom (Mdouble new_)
 
virtual void createBaseSpecies ()
 
void set_study ()
 
void set_study (int study_num)
 
virtual void actionsBeforeTimeStep ()
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions ()
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (Mdouble new_)
 
Mdouble get_H ()
 
void printTime () const
 Displays the current simulation time and the maximum simulation duration. More...
 
bool readNextArgument (int &i, int argc, char *argv[])
 Interprets the i^th command-line argument. More...
 
int getNCreated () const
 
void increaseNCreated ()
 
- Public Member Functions inherited from Chute
 Chute ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Chute (const DPMBase &other)
 Copy constructor, converts an existing DPMBase problem into a Chute problem. More...
 
 Chute (const MercuryBase &other)
 Copy constructor, converts an existing MercuryBase problem into a Chute problem. More...
 
 Chute (const Mercury3D &other)
 Copy constructor, converts an existing Mercury3D problem into a Chute problem. More...
 
 Chute (const Chute &other)
 Default copy constructor. More...
 
void constructor ()
 This is the actual constructor METHOD; it is called by all constructors above (except the default copy constructor). More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 This method can be used for reading object properties from a string. More...
 
void setupSideWalls ()
 Creates chute side walls (either solid or periodic) More...
 
void makeChutePeriodic ()
 This makes the chute periodic in Y. More...
 
bool getIsPeriodic () const
 Returns whether the chute is periodic in Y. More...
 
void setupInitialConditions () override
 Creates bottom, side walls and a particle insertion boundary. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads all chute properties from an istream. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 This function writes the Chute properties to an ostream, and adds the properties of ALL chute particles as well. More...
 
void setFixedParticleRadius (Mdouble fixedParticleRadius)
 Sets the particle radius of the fixed particles which constitute the (rough) chute bottom. More...
 
Mdouble getFixedParticleRadius () const
 Returns the particle radius of the fixed particles which constitute the (rough) chute bottom. More...
 
void setRoughBottomType (RoughBottomType roughBottomType)
 Sets the type of rough bottom of the chute. More...
 
void setRoughBottomType (std::string roughBottomTypeString)
 Sets the type of rough bottom of the chute, using a string with the EXACT enum type as input. More...
 
RoughBottomType getRoughBottomType () const
 Returns the type of (rough) bottom of the chute. More...
 
void setChuteAngle (Mdouble chuteAngle)
 Sets gravity vector according to chute angle (in degrees) More...
 
void setChuteAngleAndMagnitudeOfGravity (Mdouble chuteAngle, Mdouble gravity)
 Sets gravity vector according to chute angle (in degrees) More...
 
Mdouble getChuteAngle () const
 Returns the chute angle (in radians) More...
 
Mdouble getChuteAngleDegrees () const
 Returns the chute angle (in degrees) More...
 
void setMaxFailed (unsigned int maxFailed)
 Sets the number of times a particle will be tried to be added to the insertion boundary. More...
 
unsigned int getMaxFailed () const
 Returns the number of times a particle will be tried to be added to the insertion boundary. More...
 
void setInflowParticleRadius (Mdouble inflowParticleRadius)
 Sets the radius of the inflow particles to a single one (i.e. ensures a monodisperse inflow). More...
 
void setInflowParticleRadius (Mdouble minInflowParticleRadius, Mdouble maxInflowParticleRadius)
 Sets the minimum and maximum radius of the inflow particles. More...
 
void setMinInflowParticleRadius (Mdouble minInflowParticleRadius)
 sets the minimum radius of inflow particles More...
 
void setMaxInflowParticleRadius (Mdouble maxInflowParticleRadius)
 Sets the maximum radius of inflow particles. More...
 
Mdouble getInflowParticleRadius () const
 Returns the average radius of inflow particles. More...
 
Mdouble getMinInflowParticleRadius () const
 returns the minimum radius of inflow particles More...
 
Mdouble getMaxInflowParticleRadius () const
 Returns the maximum radius of inflow particles. More...
 
void setInflowHeight (Mdouble inflowHeight)
 Sets maximum inflow height (Z-direction) More...
 
Mdouble getInflowHeight () const
 Returns the maximum inflow height (Z-direction) More...
 
void setInflowVelocity (Mdouble inflowVelocity)
 Sets the average inflow velocity. More...
 
Mdouble getInflowVelocity () const
 Returns the average inflow velocity. More...
 
void setInflowVelocityVariance (Mdouble inflowVelocityVariance)
 Sets the inflow velocity variance. More...
 
Mdouble getInflowVelocityVariance () const
 Returns the inflow velocity variance. More...
 
void setChuteWidth (Mdouble chuteWidth)
 Sets the chute width (Y-direction) More...
 
Mdouble getChuteWidth () const
 Returns the chute width (Y-direction) More...
 
virtual void setChuteLength (Mdouble chuteLength)
 Sets the chute length (X-direction) More...
 
Mdouble getChuteLength () const
 Returns the chute length (X-direction) More...
 
void setInsertionBoundary (InsertionBoundary *insertionBoundary)
 Sets the chute insertion boundary. More...
 
- Public Member Functions inherited from Mercury3D
 Mercury3D ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Mercury3D (const DPMBase &other)
 Copy-constructor for creates an Mercury3D problem from an existing MD problem. More...
 
 Mercury3D (const Mercury3D &other)
 Copy-constructor. More...
 
void constructor ()
 Function that sets the SystemDimension and ParticleDimension to 3. More...
 
std::vector< BaseParticle * > hGridFindParticleContacts (const BaseParticle *obj) override
 Returns all particles that have a contact with a given particle. More...
 
- Public Member Functions inherited from MercuryBase
 MercuryBase ()
 This is the default constructor. It sets sensible defaults. More...
 
 ~MercuryBase () override
 This is the default destructor. More...
 
 MercuryBase (const MercuryBase &mercuryBase)
 Copy-constructor. More...
 
void constructor ()
 This is the actual constructor, it is called do both constructors above. More...
 
void hGridActionsBeforeTimeLoop () override
 This sets up the broad phase information, has to be done at this stage because it requires the particle size. More...
 
void hGridActionsBeforeTimeStep () override
 Performs all necessary actions before a time-step, like updating the particles and resetting all the bucket information, etc. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads the MercuryBase from an input stream, for example a restart file. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 Writes all data into a restart file. More...
 
Mdouble getHGridCurrentMaxRelativeDisplacement () const
 Returns hGridCurrentMaxRelativeDisplacement_. More...
 
Mdouble getHGridTotalCurrentMaxRelativeDisplacement () const
 Returns hGridTotalCurrentMaxRelativeDisplacement_. More...
 
void setHGridUpdateEachTimeStep (bool updateEachTimeStep)
 Sets whether or not the HGrid must be updated every time step. More...
 
bool getHGridUpdateEachTimeStep () const final
 Gets whether or not the HGrid is updated every time step. More...
 
void setHGridMaxLevels (unsigned int HGridMaxLevels)
 Sets the maximum number of levels of the HGrid in this MercuryBase. More...
 
unsigned int getHGridMaxLevels () const
 Gets the maximum number of levels of the HGrid in this MercuryBase. More...
 
HGridMethod getHGridMethod () const
 Gets whether the HGrid in this MercuryBase is BOTTOMUP or TOPDOWN. More...
 
void setHGridMethod (HGridMethod hGridMethod)
 Sets the HGridMethod to either BOTTOMUP or TOPDOWN. More...
 
HGridDistribution getHGridDistribution () const
 Gets how the sizes of the cells of different levels are distributed. More...
 
void setHGridDistribution (HGridDistribution hGridDistribution)
 Sets how the sizes of the cells of different levels are distributed. More...
 
Mdouble getHGridCellOverSizeRatio () const
 Gets the ratio of the smallest cell over the smallest particle. More...
 
void setHGridCellOverSizeRatio (Mdouble cellOverSizeRatio)
 Sets the ratio of the smallest cell over the smallest particle. More...
 
bool hGridNeedsRebuilding ()
 Gets if the HGrid needs rebuilding before anything else happens. More...
 
virtual unsigned int getHGridTargetNumberOfBuckets () const
 Gets the desired number of buckets, which is the maximum of the number of particles and 10. More...
 
virtual Mdouble getHGridTargetMinInteractionRadius () const
 Gets the desired size of the smallest cells of the HGrid. More...
 
virtual Mdouble getHGridTargetMaxInteractionRadius () const
 Gets the desired size of the largest cells of the HGrid. More...
 
bool checkParticleForInteraction (const BaseParticle &P) final
 Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle. More...
 
bool checkParticleForInteractionLocal (const BaseParticle &P) final
 Checks if the given BaseParticle has an interaction with a BaseWall or other BaseParticles in a local domain. More...
 
virtual Mdouble userHGridCellSize (unsigned int level)
 Virtual function that enables inheriting classes to implement a function to let the user set the cell size of the HGrid. More...
 
void hGridInfo (std::ostream &os=std::cout) const
 Writes the info of the HGrid to the screen in a nice format. More...
 
- Public Member Functions inherited from DPMBase
void constructor ()
 A function which initialises the member variables to default values, so that the problem can be solved off the shelf; sets up a basic two dimensional problem which can be solved off the shelf. It is called in the constructor DPMBase(). More...
 
 DPMBase ()
 Constructor that calls the "void constructor()". More...
 
 DPMBase (const DPMBase &other)
 Copy constructor type-2. More...
 
virtual ~DPMBase ()
 virtual destructor More...
 
void autoNumber ()
 The autoNumber() function calls three functions: setRunNumber(), readRunNumberFromFile() and incrementRunNumberInFile(). More...
 
std::vector< intget1DParametersFromRunNumber (int size_x) const
 This turns a counter into 1 index, which is a useful feature for performing 1D parameter study. The index run from 1:size_x, while the study number starts at 0 (initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget2DParametersFromRunNumber (int size_x, int size_y) const
 This turns a counter into 2 indices which is a very useful feature for performing a 2D study. The indices run from 1:size_x and 1:size_y, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget3DParametersFromRunNumber (int size_x, int size_y, int size_z) const
 This turns a counter into 3 indices, which is a useful feature for performing a 3D parameter study. The indices run from 1:size_x, 1:size_y and 1:size_z, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
int launchNewRun (const char *name, bool quick=false)
 This launches a code from within this code. Please pass the name of the code to run. More...
 
void setRunNumber (int runNumber)
 This sets the counter/Run number, overriding the defaults. More...
 
int getRunNumber () const
 This returns the current value of the counter (runNumber_) More...
 
virtual void decompose ()
 Sends particles from processorId to the root processor. More...
 
void solve ()
 The work horse of the code. More...
 
virtual void computeOneTimeStep ()
 Performs everything needed for one time step, used in the time-loop of solve(). More...
 
void checkSettings ()
 Checks if the essentials are set properly to go ahead with solving the problem. More...
 
void forceWriteOutputFiles ()
 Writes output files immediately, even if the current time step was not meant to be written. Also resets the last saved time step. More...
 
virtual void writeOutputFiles ()
 Writes simulation data to all the main Mercury files: .data, .ene, .fstat, .xballs and .restart (see the Mercury website for more details regarding these files). More...
 
void solve (int argc, char *argv[])
 The work horse of the code. Can handle flags from the command line. More...
 
virtual void writeXBallsScript () const
 This writes a script which can be used to load the xballs problem to display the data just generated. More...
 
virtual Mdouble getInfo (const BaseParticle &P) const
 A virtual function that returns some user-specified information about a particle. More...
 
ParticleVtkWritergetVtkWriter () const
 
virtual void writeRestartFile ()
 Stores all the particle data for current save time step to a "restart" file, which is a file simply intended to store all the information necessary to "restart" a simulation from a given time step (see also MercuryDPM.org for more information on restart files). More...
 
void writeDataFile ()
 
void writeEneFile ()
 
void writeFStatFile ()
 
void fillDomainWithParticles (unsigned N=50)
 
bool readRestartFile (ReadOptions opt=ReadOptions::ReadAll)
 Reads all the particle data corresponding to a given, existing . restart file (for more details regarding restart files, refer to the training materials on the MercuryDPM website).Returns true if it is successful, false otherwise. More...
 
int readRestartFile (std::string fileName, ReadOptions opt=ReadOptions::ReadAll)
 The same as readRestartFile(bool), but also reads all the particle data corresponding to the current saved time step. More...
 
virtual BaseWallreadUserDefinedWall (const std::string &type) const
 Allows you to read in a wall defined in a Driver directory; see USER/Luca/ScrewFiller. More...
 
virtual void readOld (std::istream &is)
 Reads all data from a restart file, e.g. domain data and particle data; old version. More...
 
bool readDataFile (std::string fileName="", unsigned int format=0)
 This allows particle data to be reloaded from data files. More...
 
bool readParAndIniFiles (std::string fileName)
 Allows the user to read par.ini files (useful to read files produced by the MDCLR simulation code - external to MercuryDPM) More...
 
bool readNextDataFile (unsigned int format=0)
 Reads the next data file with default format=0. However, one can modify the format based on whether the particle data corresponds to 3D or 2D data- see Visualising data in xballs. More...
 
void readNextFStatFile ()
 Reads the next fstat file. More...
 
bool findNextExistingDataFile (Mdouble tMin, bool verbose=true)
 Finds and opens the next data file, if such a file exists. More...
 
bool readArguments (int argc, char *argv[])
 Can interpret main function input arguments that are passed by the driver codes. More...
 
bool checkParticleForInteractionLocalPeriodic (const BaseParticle &P)
 
void readSpeciesFromDataFile (bool read=true)
 
void importParticlesAs (ParticleHandler &particleHandler, InteractionHandler &interactionHandler, const ParticleSpecies *species)
 Copies particles, interactions assigning species from a local simulation to a global one. Useful for the creation of a cluster. More...
 
MERCURY_DEPRECATED FilegetDataFile ()
 The non const version. Allows one to edit the File::dataFile. More...
 
MERCURY_DEPRECATED FilegetEneFile ()
 The non const version. Allows to edit the File::eneFile. More...
 
MERCURY_DEPRECATED FilegetFStatFile ()
 The non const version. Allows to edit the File::fStatFile. More...
 
MERCURY_DEPRECATED FilegetRestartFile ()
 The non const version. Allows to edit the File::restartFile. More...
 
MERCURY_DEPRECATED FilegetStatFile ()
 The non const version. Allows to edit the File::statFile. More...
 
FilegetInteractionFile ()
 Return a reference to the file InteractionsFile. More...
 
MERCURY_DEPRECATED const FilegetDataFile () const
 The const version. Does not allow for any editing of the File::dataFile. More...
 
MERCURY_DEPRECATED const FilegetEneFile () const
 The const version. Does not allow for any editing of the File::eneFile. More...
 
MERCURY_DEPRECATED const FilegetFStatFile () const
 The const version. Does not allow for any editing of the File::fStatFile. More...
 
MERCURY_DEPRECATED const FilegetRestartFile () const
 The const version. Does not allow for any editing of the File::restartFile. More...
 
MERCURY_DEPRECATED const FilegetStatFile () const
 The const version. Does not allow for any editing of the File::statFile. More...
 
const FilegetInteractionFile () const
 
const std::string & getName () const
 Returns the name of the file. Does not allow to change it though. More...
 
void setName (const std::string &name)
 Allows to set the name of all the files (ene, data, fstat, restart, stat) More...
 
void setName (const char *name)
 Calls setName(std::string) More...
 
void setSaveCount (unsigned int saveCount)
 Sets File::saveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setFileType (FileType fileType)
 Sets File::fileType_ for all files (ene, data, fstat, restart, stat) More...
 
void setOpenMode (std::fstream::openmode openMode)
 Sets File::openMode_ for all files (ene, data, fstat, restart, stat) More...
 
void resetFileCounter ()
 Resets the file counter for each file i.e. for ene, data, fstat, restart, stat) More...
 
void closeFiles ()
 Closes all files (ene, data, fstat, restart, stat) that were opened to read or write. More...
 
void setLastSavedTimeStep (unsigned int nextSavedTimeStep)
 Sets the next time step for all the files (ene, data, fstat, restart, stat) at which the data is to be written or saved. More...
 
Mdouble getTime () const
 Returns the current simulation time. More...
 
Mdouble getNextTime () const
 Returns the current simulation time. More...
 
unsigned int getNumberOfTimeSteps () const
 Returns the current counter of time-steps, i.e. the number of time-steps that the simulation has undergone so far. More...
 
void setTime (Mdouble time)
 Sets a new value for the current simulation time. More...
 
void setTimeMax (Mdouble newTMax)
 Sets a new value for the maximum simulation duration. More...
 
Mdouble getTimeMax () const
 Returns the maximum simulation duration. More...
 
void setLogarithmicSaveCount (Mdouble logarithmicSaveCountBase)
 Sets File::logarithmicSaveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setNToWrite (int nToWrite)
 set the number of elements to write to the screen More...
 
int getNToWrite () const
 get the number of elements to write to the More...
 
void setRotation (bool rotation)
 Sets whether particle rotation is enabled or disabled. More...
 
bool getRotation () const
 Indicates whether particle rotation is enabled or disabled. More...
 
void setWallsWriteVTK (FileType writeWallsVTK)
 Sets whether walls are written into a VTK file. More...
 
void setWallsWriteVTK (bool)
 Sets whether walls are written into a VTK file. More...
 
void setInteractionsWriteVTK (bool)
 Sets whether interactions are written into a VTK file. More...
 
void setParticlesWriteVTK (bool writeParticlesVTK)
 Sets whether particles are written in a VTK file. More...
 
void setSuperquadricParticlesWriteVTK (bool writeSuperquadricParticlesVTK)
 
FileType getWallsWriteVTK () const
 Returns whether walls are written in a VTK file. More...
 
bool getParticlesWriteVTK () const
 Returns whether particles are written in a VTK file. More...
 
bool getSuperquadricParticlesWriteVTK () const
 
Mdouble getXMin () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin. More...
 
Mdouble getXMax () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax. More...
 
Mdouble getYMin () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin. More...
 
Mdouble getYMax () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax. More...
 
Mdouble getZMin () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin. More...
 
Mdouble getZMax () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax. More...
 
Vec3D getMin () const
 
Vec3D getMax () const
 
void setXMin (Mdouble newXMin)
 Sets the value of XMin, the lower bound of the problem domain in the x-direction. More...
 
void setYMin (Mdouble newYMin)
 Sets the value of YMin, the lower bound of the problem domain in the y-direction. More...
 
void setZMin (Mdouble newZMin)
 Sets the value of ZMin, the lower bound of the problem domain in the z-direction. More...
 
void setXMax (Mdouble newXMax)
 Sets the value of XMax, the upper bound of the problem domain in the x-direction. More...
 
void setYMax (Mdouble newYMax)
 Sets the value of YMax, the upper bound of the problem domain in the y-direction. More...
 
void setZMax (Mdouble newZMax)
 Sets the value of ZMax, the upper bound of the problem domain in the z-direction. More...
 
void setMax (const Vec3D &max)
 Sets the maximum coordinates of the problem domain. More...
 
void setMax (Mdouble, Mdouble, Mdouble)
 Sets the maximum coordinates of the problem domain. More...
 
void setDomain (const Vec3D &min, const Vec3D &max)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (const Vec3D &min)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (Mdouble, Mdouble, Mdouble)
 Sets the minimum coordinates of the problem domain. More...
 
void setTimeStep (Mdouble newDt)
 Sets a new value for the simulation time step. More...
 
Mdouble getTimeStep () const
 Returns the simulation time step. More...
 
void setNumberOfOMPThreads (int numberOfOMPThreads)
 
int getNumberOfOMPThreads () const
 
void setXBallsColourMode (int newCMode)
 Set the xballs output mode. More...
 
int getXBallsColourMode () const
 Get the xballs colour mode (CMode). More...
 
void setXBallsVectorScale (double newVScale)
 Set the scale of vectors in xballs. More...
 
double getXBallsVectorScale () const
 Returns the scale of vectors used in xballs. More...
 
void setXBallsAdditionalArguments (std::string newXBArgs)
 Set the additional arguments for xballs. More...
 
std::string getXBallsAdditionalArguments () const
 Returns the additional arguments for xballs. More...
 
void setXBallsScale (Mdouble newScale)
 Sets the scale of the view (either normal, zoom in or zoom out) to display in xballs. The default is fit to screen. More...
 
double getXBallsScale () const
 Returns the scale of the view in xballs. More...
 
void setGravity (Vec3D newGravity)
 Sets a new value for the gravitational acceleration. More...
 
Vec3D getGravity () const
 Returns the gravitational acceleration. More...
 
void setDimension (unsigned int newDim)
 Sets both the system dimensions and the particle dimensionality. More...
 
void setSystemDimensions (unsigned int newDim)
 Sets the system dimensionality. More...
 
unsigned int getSystemDimensions () const
 Returns the system dimensionality. More...
 
void setParticleDimensions (unsigned int particleDimensions)
 Sets the particle dimensionality. More...
 
unsigned int getParticleDimensions () const
 Returns the particle dimensionality. More...
 
std::string getRestartVersion () const
 This is to take into account for different Mercury versions. Returns the version of the restart file. More...
 
void setRestartVersion (std::string newRV)
 Sets restart_version. More...
 
bool getRestarted () const
 Returns the flag denoting if the simulation was restarted or not. More...
 
void setRestarted (bool newRestartedFlag)
 Allows to set the flag stating if the simulation is to be restarted or not. More...
 
bool getAppend () const
 Returns whether the "append" option is on or off. More...
 
void setAppend (bool newAppendFlag)
 Sets whether the "append" option is on or off. More...
 
Mdouble getElasticEnergy () const
 Returns the global elastic energy within the system. More...
 
Mdouble getKineticEnergy () const
 Returns the global kinetic energy stored in the system. More...
 
Mdouble getGravitationalEnergy () const
 Returns the global gravitational potential energy stored in the system. More...
 
Mdouble getRotationalEnergy () const
 JMFT Returns the global rotational energy stored in the system. More...
 
Mdouble getTotalEnergy () const
 
Mdouble getTotalMass () const
 JMFT: Return the total mass of the system, excluding fixed particles. More...
 
Vec3D getCentreOfMass () const
 JMFT: Return the centre of mass of the system, excluding fixed particles. More...
 
Vec3D getTotalMomentum () const
 JMFT: Return the total momentum of the system, excluding fixed particles. More...
 
double getCPUTime ()
 
double getWallTime ()
 
virtual void hGridInsertParticle (BaseParticle *obj UNUSED)
 
virtual void hGridUpdateParticle (BaseParticle *obj UNUSED)
 
virtual void hGridRemoveParticle (BaseParticle *obj UNUSED)
 
bool mpiIsInCommunicationZone (BaseParticle *particle)
 Checks if the position of the particle is in an mpi communication zone or not. More...
 
bool mpiInsertParticleCheck (BaseParticle *P)
 Function that checks if the mpi particle should really be inserted by the current domain. More...
 
void insertGhostParticle (BaseParticle *P)
 This function inserts a particle in the mpi communication boundaries. More...
 
void updateGhostGrid (BaseParticle *P)
 Checks if the Domain/periodic interaction distance needs to be updated and updates it accordingly. More...
 
virtual void gatherContactStatistics (unsigned int index1, int index2, Vec3D Contact, Mdouble delta, Mdouble ctheta, Mdouble fdotn, Mdouble fdott, Vec3D P1_P2_normal_, Vec3D P1_P2_tangential)
 //Not unsigned index because of possible wall collisions. More...
 
void setNumberOfDomains (std::vector< unsigned > direction)
 Sets the number of domains in x-,y- and z-direction. Required for parallel computations. More...
 
void splitDomain (DomainSplit domainSplit)
 
std::vector< unsignedgetNumberOfDomains ()
 returns the number of domains More...
 
DomaingetCurrentDomain ()
 Function that returns a pointer to the domain corresponding to the processor. More...
 
void removeOldFiles () const
 
void setMeanVelocity (Vec3D V_mean_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
void setMeanVelocityAndKineticEnergy (Vec3D V_mean_goal, Mdouble Ek_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
Mdouble getTotalVolume () const
 Get the total volume of the cuboid system. More...
 
Matrix3D getKineticStress () const
 Calculate the kinetic stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getStaticStress () const
 Calculate the static stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getTotalStress () const
 Calculate the total stress tensor in the system averaged over the whole volume. More...
 
virtual void handleParticleRemoval (unsigned int id)
 Handles the removal of particles from the particleHandler. More...
 
virtual void handleParticleAddition (unsigned int id, BaseParticle *p)
 
void writePythonFileForVTKVisualisation () const
 

Public Attributes

int nCreated_
 
bool randomiseSpecies
 
SphericalParticle inflowParticle_
 
LinearViscoelasticSpeciesspecies
 
LinearViscoelasticMixedSpeciesbaseSpecies
 
LinearViscoelasticFrictionSpeciesspecies
 
LinearViscoelasticFrictionMixedSpeciesbaseSpecies
 
- Public Attributes inherited from DPMBase
SpeciesHandler speciesHandler
 A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc. More...
 
RNG random
 This is a random generator, often used for setting up the initial conditions etc... More...
 
ParticleHandler particleHandler
 An object of the class ParticleHandler, contains the pointers to all the particles created. More...
 
ParticleHandler paoloParticleHandler
 Fake particleHandler created by Paolo needed temporary by just Paolo. More...
 
WallHandler wallHandler
 An object of the class WallHandler. Contains pointers to all the walls created. More...
 
BoundaryHandler boundaryHandler
 An object of the class BoundaryHandler which concerns insertion and deletion of particles into or from regions. More...
 
PeriodicBoundaryHandler periodicBoundaryHandler
 Internal handler that deals with periodic boundaries, especially in a parallel build. More...
 
DomainHandler domainHandler
 An object of the class DomainHandler which deals with parallel code. More...
 
InteractionHandler interactionHandler
 An object of the class InteractionHandler. More...
 
CGHandler cgHandler
 Object of the class cgHandler. More...
 
File dataFile
 An instance of class File to handle in- and output into a .data file. More...
 
File fStatFile
 An instance of class File to handle in- and output into a .fstat file. More...
 
File eneFile
 An instance of class File to handle in- and output into a .ene file. More...
 
File restartFile
 An instance of class File to handle in- and output into a .restart file. More...
 
File statFile
 An instance of class File to handle in- and output into a .stat file. More...
 
File interactionFile
 File class to handle in- and output into .interactions file. This file hold information about interactions. More...
 
Time clock_
 record when the simulation started More...
 

Additional Inherited Members

- Public Types inherited from DPMBase
enum  ReadOptions : int { ReadOptions::ReadAll, ReadOptions::ReadNoInteractions, ReadOptions::ReadNoParticlesAndInteractions }
 
enum  DomainSplit {
  DomainSplit::X, DomainSplit::Y, DomainSplit::Z, DomainSplit::XY,
  DomainSplit::XZ, DomainSplit::YZ, DomainSplit::XYZ
}
 
- Static Public Member Functions inherited from DPMBase
static void incrementRunNumberInFile ()
 Increment the run Number (counter value) stored in the file_counter (COUNTER_DONOTDEL) by 1 and store the new value in the counter file. More...
 
static int readRunNumberFromFile ()
 Read the run number or the counter from the counter file (COUNTER_DONOTDEL) More...
 
static bool areInContact (const BaseParticle *pI, const BaseParticle *pJ)
 Checks if two particle are in contact or is there any positive overlap. More...
 
- Protected Member Functions inherited from Chute
void actionsBeforeTimeStep () override
 Calls Chute::cleanChute(). More...
 
void cleanChute ()
 Deletes all outflow particles once every 100 time steps. More...
 
virtual void createBottom ()
 Creates the chute bottom, which can be either flat or one of three flavours of rough. More...
 
virtual void addFlowParticlesCompactly ()
 Add initial flow particles in a dense packing. More...
 
virtual SphericalParticle createFlowParticle ()
 
void printTime () const override
 prints time, max time and number of particles More...
 
- Protected Member Functions inherited from Mercury3D
void hGridFindContactsWithinTargetCell (int x, int y, int z, unsigned int l)
 Finds contacts between particles in the target cell. More...
 
void hGridFindContactsWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj)
 Finds contacts between the BaseParticle and the target cell. More...
 
void computeWallForces (BaseWall *w) override
 Compute contacts with a wall. More...
 
void hGridFindParticlesWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj, std::vector< BaseParticle * > &list)
 Finds particles within target cell and stores them in a list. More...
 
void hGridGetInteractingParticleList (BaseParticle *obj, std::vector< BaseParticle * > &list) override
 Obtains all neighbour particles of a given object, obtained from the hgrid. More...
 
void computeInternalForces (BaseParticle *obj) override
 Finds contacts with the BaseParticle; avoids multiple checks. More...
 
bool hGridHasContactsInTargetCell (int x, int y, int z, unsigned int l, const BaseParticle *obj) const
 Tests if the BaseParticle has contacts with other Particles in the target cell. More...
 
bool hGridHasParticleContacts (const BaseParticle *obj) override
 Tests if a BaseParticle has any contacts in the HGrid. More...
 
void hGridRemoveParticle (BaseParticle *obj) override
 Removes a BaseParticle from the HGrid. More...
 
void hGridUpdateParticle (BaseParticle *obj) override
 Updates the cell (not the level) of a BaseParticle. More...
 
- Protected Member Functions inherited from MercuryBase
void hGridRebuild ()
 This sets up the parameters required for the contact model. More...
 
void hGridInsertParticle (BaseParticle *obj) final
 Inserts a single Particle to current grid. More...
 
void hGridUpdateMove (BaseParticle *iP, Mdouble move) final
 Computes the relative displacement of the given BaseParticle and updates the currentMaxRelativeDisplacement_ accordingly. More...
 
void hGridActionsBeforeIntegration () override
 Resets the currentMaxRelativeDisplacement_ to 0. More...
 
void hGridActionsAfterIntegration () override
 This function has to be called before integrateBeforeForceComputation. More...
 
HGridgetHGrid ()
 Gets the HGrid used by this problem. More...
 
const HGridgetHGrid () const
 Gets the HGrid used by this problem, const version. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Reads the next command line argument. More...
 
- Protected Member Functions inherited from DPMBase
virtual void computeAllForces ()
 Computes all the forces acting on the particles using the BaseInteractable::setForce() and BaseInteractable::setTorque() More...
 
virtual void computeInternalForce (BaseParticle *, BaseParticle *)
 Computes the forces between two particles (internal in the sense that the sum over all these forces is zero i.e. fully modelled forces) More...
 
virtual void computeExternalForces (BaseParticle *)
 Computes the external forces, such as gravity, acting on particles. More...
 
void computeForcesDueToWalls (BaseParticle *, BaseWall *)
 Computes the forces on the particles due to the walls (normals are outward normals) More...
 
virtual void actionsOnRestart ()
 A virtual function where the users can add extra code which is executed only when the code is restarted. More...
 
virtual void actionsBeforeTimeLoop ()
 A virtual function. Allows one to carry out any operations before the start of the time loop. More...
 
virtual void computeAdditionalForces ()
 A virtual function which allows to define operations to be executed prior to the OMP force collect. More...
 
virtual void actionsAfterSolve ()
 A virtual function which allows to define operations to be executed after the solve(). More...
 
virtual void actionsAfterTimeStep ()
 A virtual function which allows to define operations to be executed after time step. More...
 
void writeVTKFiles () const
 
virtual void outputXBallsData (std::ostream &os) const
 This function writes the location of the walls and particles in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void outputXBallsDataParticle (unsigned int i, unsigned int format, std::ostream &os) const
 This function writes out the particle locations into an output stream in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void writeEneHeader (std::ostream &os) const
 Writes a header with a certain format for ENE file. More...
 
virtual void writeFstatHeader (std::ostream &os) const
 Writes a header with a certain format for FStat file. More...
 
virtual void writeEneTimeStep (std::ostream &os) const
 Write the global kinetic, potential energy, etc. in the system. More...
 
virtual void initialiseStatistics ()
 
virtual void outputStatistics ()
 
void gatherContactStatistics ()
 
virtual void processStatistics (bool)
 
virtual void finishStatistics ()
 
virtual void integrateBeforeForceComputation ()
 Update particles' and walls' positions and velocities before force computation. More...
 
virtual void integrateAfterForceComputation ()
 Update particles' and walls' positions and velocities after force computation. More...
 
virtual void checkInteractionWithBoundaries ()
 There are a range of boundaries one could implement depending on ones' problem. This methods checks for interactions between particles and such range of boundaries. See BaseBoundary.h and all the boundaries in the Boundaries folder. More...
 
void setFixedParticles (unsigned int n)
 Sets a number, n, of particles in the particleHandler as "fixed particles". More...
 
virtual bool continueSolve () const
 A virtual function for deciding whether to continue the simulation, based on a user-specified criterion. More...
 
void outputInteractionDetails () const
 Displays the interaction details corresponding to the pointer objects in the interaction handler. More...
 
bool isTimeEqualTo (Mdouble time) const
 Checks whether the input variable "time" is the current time in the simulation. More...
 
void removeDuplicatePeriodicParticles ()
 Removes periodic duplicate Particles. More...
 
void checkAndDuplicatePeriodicParticles ()
 For simulations using periodic boundaries, checks and adds particles when necessary into the particle handler. See DPMBase.cc and PeriodicBoundary.cc for more details. More...
 
void performGhostParticleUpdate ()
 When the Verlet scheme updates the positions and velocities of particles, ghost particles will need an update as wel. Their status will also be updated accordingly. More...
 
void deleteGhostParticles (std::set< BaseParticle * > &particlesToBeDeleted)
 
void synchroniseParticle (BaseParticle *, unsigned fromProcessor=0)
 
void performGhostVelocityUpdate ()
 updates the final time-step velocity of the ghost particles More...
 
void setSoftStop ()
 function for setting sigaction constructor. More...
 
- Static Protected Member Functions inherited from DPMBase
static void signalHandler (int signal)
 signal handler function. More...
 

Constructor & Destructor Documentation

◆ SilbertPeriodic() [1/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
38  {
39  // Problem parameters
40  setName("silbert");
41 
42  //time stepping
43  setTimeStep(1e-4);
44  setTimeMax(2000);
45 
46  //output parameters
47  setSaveCount(50e4);
48 
49  //particle radii
51  setFixedParticleRadius(.5);//getInflowParticleRadius());
53 
54 
55  //particle properties
56  baseSpecies = nullptr;
58  species->setDensity(6/constants::pi);
59  species->setStiffness(2e5);
60  species->setDissipation(25.0);
62 
63  //chute properties
65  setChuteLength(20);
66  setChuteWidth(10);
68  set_H(20);
69 
70  randomiseSpecies=false;
71  nCreated_=0;
72 
74  dataFile.setFileType(FileType::ONE_FILE);
75  fStatFile.setFileType(FileType::NO_FILE);
76  eneFile.setFileType(FileType::ONE_FILE);
77  }

References baseSpecies, BaseHandler< T >::copyAndAddObject(), DPMBase::dataFile, DPMBase::eneFile, DPMBase::fStatFile, inflowParticle_, MULTILAYER, nCreated_, NO_FILE, constants::pi, randomiseSpecies, DPMBase::restartFile, set_H(), Chute::setChuteAngleAndMagnitudeOfGravity(), Chute::setChuteLength(), Chute::setChuteWidth(), File::setFileType(), Chute::setFixedParticleRadius(), Chute::setInflowParticleRadius(), Chute::setInflowVelocity(), DPMBase::setName(), Chute::setRoughBottomType(), DPMBase::setSaveCount(), BaseParticle::setSpecies(), DPMBase::setTimeMax(), DPMBase::setTimeStep(), species, and DPMBase::speciesHandler.

◆ SilbertPeriodic() [2/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
36  {
37  // Problem parameters
38  setName("silbert");
39 
40  //time stepping
41  setTimeStep(1e-4);
42  setTimeMax(2000);
43 
44  //output parameters
45  setSaveCount(50e4);
46 
47  //particle radii
49  setFixedParticleRadius(.5);//getInflowParticleRadius());
51 
52  //particle properties
53  baseSpecies = nullptr;
55  species->setDensity(6/constants::pi);
56  //~ setStiffnessAndRestitutionCoefficient(2e5,0.97,1);
57  double tc=5e-3, r=0.97, beta=0.44, mu=0.092, mur=0.042;
58  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient(tc,r,beta,1.0);// need to consider effective mass
59  species->setSlidingFrictionCoefficient(mu);
60  species->setRollingFrictionCoefficient(mur);
61 
62  //chute properties
64  setChuteLength(20);
65  setChuteWidth(10);
66  set_H(20);
67  nCreated_=0;
68 
69  }

References baseSpecies, mathsFunc::beta(), BaseHandler< T >::copyAndAddObject(), MULTILAYER, nCreated_, constants::pi, set_H(), Chute::setChuteAngleAndMagnitudeOfGravity(), Chute::setChuteLength(), Chute::setChuteWidth(), Chute::setFixedParticleRadius(), Chute::setInflowParticleRadius(), DPMBase::setName(), Chute::setRoughBottomType(), DPMBase::setSaveCount(), DPMBase::setTimeMax(), DPMBase::setTimeStep(), species, and DPMBase::speciesHandler.

◆ SilbertPeriodic() [3/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
34  {
35  // Problem parameters
36  setName("silbert");
37 
38  //time stepping
39  setTimeStep(1e-4);
40  setTimeMax(2000);
41 
42  //output parameters
43  setSaveCount(50e4);
44 
45  //particle radii
47  setFixedParticleRadius(.5);//getInflowParticleRadius());
49 
50  //particle properties
51  setDensity(6/pi);
52  //~ setStiffnessAndRestitutionCoefficient(2e5,0.97,1);
53  double tc=5e-3, r=0.97, beta=0.44, mu=0.092, mur=0.042;
54  setCollisionTimeAndNormalAndTangentialRestitutionCoefficient(tc,r,beta,1.0,1.0);
55  setSlidingFrictionCoefficient(mu);
56  setSlidingFrictionCoefficientr();
57 
58  //chute properties
59  setChuteAngle(24.0, 1.0);
60  setChuteLength(20);
61  setChuteWidth(10);
62  set_H(20);
63 
64  }

References mathsFunc::beta(), MULTILAYER, and constants::pi.

◆ SilbertPeriodic() [4/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
34  {
35  // Problem parameters
36  setName("silbert");
37 
38  //time stepping
39  setTimeStep(1e-4);
40  setTimeMax(2000);
41 
42  //output parameters
43  setSaveCount(50e4);
44 
45  //particle radii
47  setFixedParticleRadius(.5);//getInflowParticleRadius());
49 
50  //particle properties
51  setDensity(6/constants::pi);
52  setStiffness(2e5);
53  setSlidingStiffness(2.0/7.0*getStiffness());
54  setDissipation(25.0);
55  //setSlidingDissipation(2.0/7.0*getDissipation());
56  setSlidingDissipation(getDissipation());
57  setSlidingFrictionCoefficient(0.5);
58 
59  //chute properties
60  setChuteAngle(24.0, 1.0);
61  setChuteLength(20);
62  setChuteWidth(10);
63  set_H(20);
64 
65  }

References MULTILAYER, and constants::pi.

◆ SilbertPeriodic() [5/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
38  {
39  // Problem parameters
40  setName("silbert");
41 
42  //time stepping
43  setTimeStep(1e-4);
44  setTimeMax(2000);
45 
46  //output parameters
47  setSaveCount(50e4);
48 
49  //particle radii
51  setFixedParticleRadius(.5);//getInflowParticleRadius());
53 
54 
55  //particle properties
56  baseSpecies = nullptr;
58  species->setDensity(6/constants::pi);
59  species->setStiffness(2e5);
60  species->setSlidingStiffness(2.0/7.0* species->getStiffness());
61  species->setDissipation(25.0);
62  //setSlidingDissipation(2.0/7.0*getDissipation());
63  species->setSlidingDissipation(species->getDissipation());
64  species->setSlidingFrictionCoefficient(0.5);
66 
67  //chute properties
69  setChuteLength(20);
70  setChuteWidth(10);
72  set_H(20);
73 
74  randomiseSpecies=false;
75  nCreated_=0;
76 
78  dataFile.setFileType(FileType::NO_FILE);
79  fStatFile.setFileType(FileType::NO_FILE);
80  eneFile.setFileType(FileType::ONE_FILE);
81  }

References baseSpecies, BaseHandler< T >::copyAndAddObject(), DPMBase::dataFile, DPMBase::eneFile, DPMBase::fStatFile, inflowParticle_, MULTILAYER, nCreated_, NO_FILE, constants::pi, randomiseSpecies, DPMBase::restartFile, set_H(), Chute::setChuteAngleAndMagnitudeOfGravity(), Chute::setChuteLength(), Chute::setChuteWidth(), File::setFileType(), Chute::setFixedParticleRadius(), Chute::setInflowParticleRadius(), Chute::setInflowVelocity(), DPMBase::setName(), Chute::setRoughBottomType(), DPMBase::setSaveCount(), BaseParticle::setSpecies(), DPMBase::setTimeMax(), DPMBase::setTimeStep(), species, and DPMBase::speciesHandler.

Member Function Documentation

◆ actionsBeforeTimeStep() [1/5]

void SilbertPeriodic::actionsBeforeTimeStep ( )
inlinevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overidden in its derived classes.

Reimplemented from DPMBase.

Reimplemented in SilbertHstop.

145 { };

◆ actionsBeforeTimeStep() [2/5]

void SilbertPeriodic::actionsBeforeTimeStep ( )
inlinevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overidden in its derived classes.

Reimplemented from DPMBase.

141 { };

◆ actionsBeforeTimeStep() [3/5]

void SilbertPeriodic::actionsBeforeTimeStep ( )
inlinevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overidden in its derived classes.

Reimplemented from DPMBase.

195 { };

◆ actionsBeforeTimeStep() [4/5]

virtual void SilbertPeriodic::actionsBeforeTimeStep ( )
inlinevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overidden in its derived classes.

Reimplemented from DPMBase.

Reimplemented in SilbertHstop.

282 { };

◆ actionsBeforeTimeStep() [5/5]

void SilbertPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overidden in its derived classes.

Reimplemented from DPMBase.

Reimplemented in SilbertHstop.

113 { };

◆ add_flow_particles() [1/5]

void SilbertPeriodic::add_flow_particles ( )
inline
166  {
167  //setHGridNumberOfBucketsToPower(particleHandler.getStorageCapacity());
171  unsigned int N=getChuteLength()*getChuteWidth()* getInflowHeight();
173  Mdouble H = getInflowHeight();
174  setZMax(1.0*getInflowHeight());
175  //uncomment the following line to achieve a high packing fraction
177 
179  //try to find new insertable particles
180  while (getNCreated()<N){
184  //duplicate particle
185  for (BaseBoundary* it : boundaryHandler)
186  it->createPeriodicParticle(p, particleHandler);
188  //duplicate duplicate particles (this is a hack which is needed as there are two boundaries, so the doubly periodic images are needed)
189  for (BaseBoundary* it : boundaryHandler)
190  it->createPeriodicParticle(p, particleHandler);
191  //hGridActionsBeforeTimeStep();
194  }
195  for (unsigned int i = particleHandler.getNumberOfObjects(); i >= 1; i--)
196  if (particleHandler.getObject(i - 1)->getPeriodicFromParticle() != nullptr)
197  {
198  while (!particleHandler.getObject(i - 1)->getInteractions().empty())
199  {
201  }
203  }
204  setInflowHeight(H);
205  //setHGridNumberOfBucketsToPower();
206  write(std::cout,false);
207  }

References DPMBase::boundaryHandler, DPMBase::checkAndDuplicatePeriodicParticles(), MercuryBase::checkParticleForInteraction(), BaseHandler< T >::copyAndAddObject(), create_inflow_particle(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getInflowHeight(), BaseInteractable::getInteractions(), BaseHandler< T >::getLastObject(), Chute::getMaxInflowParticleRadius(), getNCreated(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseParticle::getPeriodicFromParticle(), BaseParticle::getRadius(), DPMBase::getZMin(), MercuryBase::hGridActionsBeforeTimeLoop(), MercuryBase::hGridActionsBeforeTimeStep(), constants::i, increaseNCreated(), inflowParticle_, DPMBase::interactionHandler, DPMBase::particleHandler, ParticleHandler::removeObject(), InteractionHandler::removeObjectKeepingPeriodics(), Chute::setInflowHeight(), BaseHandler< T >::setStorageCapacity(), DPMBase::setZMax(), Chute::write(), and DPMBase::writeRestartFile().

Referenced by setupInitialConditions().

◆ add_flow_particles() [2/5]

void SilbertPeriodic::add_flow_particles ( )
inline
194  {
195  //setHGridNumberBucketsToPower(get_Nmax());
199  //set_Nmax(N); // automated in the new version
200  double H = getInflowHeight();
201  setZMax(1.2*getInflowHeight());
202 
203  //writeRestartFile();
204  //try to find new insertable particles
210  }
211  setInflowHeight(H);
212  //setHGridNumberOfBucketsToPower();
213  write(std::cout,false);
214  }

References MercuryBase::checkParticleForInteraction(), create_inflow_particle(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getInflowHeight(), Chute::getMaxInflowParticleRadius(), ParticleHandler::getNumberOfObjects(), MercuryBase::hGridActionsBeforeTimeLoop(), MercuryBase::hGridActionsBeforeTimeStep(), increaseNCreated(), inflowParticle_, DPMBase::particleHandler, Chute::setInflowHeight(), DPMBase::setZMax(), and Chute::write().

◆ add_flow_particles() [3/5]

void SilbertPeriodic::add_flow_particles ( )
inline
187  {
188  set_HGRID_num_buckets_to_power(get_Nmax());
191  unsigned int N=get_N()+getChuteLength()*getChuteWidth()*InflowHeight;
192  set_Nmax(N);
193  double H = InflowHeight;
194  setZMax(1.2*InflowHeight);
195 
197  //try to find new insertable particles
198  while (Particles.size()<N){
200  if (IsInsertable(P0)) {
201  num_created++;
202  } else InflowHeight += .0001* MaxInflowParticleRadius;
203  }
204  InflowHeight = H;
205  set_HGRID_num_buckets_to_power();
206  write(std::cout,false);
207  }

◆ add_flow_particles() [4/5]

void SilbertPeriodic::add_flow_particles ( )
inline
241  {
242  set_HGRID_num_buckets_to_power(particleHandler.getStorageCapacity());
245  unsigned int N=particleHandler.getNumberOfObjects()+getChuteLength()*getChuteWidth()*InflowHeight;
246  particleHandler.set_StorageCapacity(N);
247  Mdouble H = InflowHeight;
248  setZMax(1.2*InflowHeight);
249 
251  //try to find new insertable particles
254  if (IsInsertable(P0)) {
255  num_created++;
256  } else InflowHeight += .0001* MaxInflowParticleRadius;
257  }
258  InflowHeight = H;
259  set_HGRID_num_buckets_to_power();
260  write(std::cout,false);
261  }

◆ add_flow_particles() [5/5]

void SilbertPeriodic::add_flow_particles ( )
inline
334  {
335  //setHGridNumberOfBucketsToPower(particleHandler.getStorageCapacity());
339  unsigned int N=getChuteLength()*getChuteWidth()* getInflowHeight();
341  Mdouble H = getInflowHeight();
342  setZMax(1.0*getInflowHeight());
343  //uncomment the following line to achieve a high packing fraction
345 
347  //try to find new insertable particles
348  while (getNCreated()<N){
352  //duplicate particle
353  for (BaseBoundary* it : boundaryHandler)
354  it->createPeriodicParticle(p, particleHandler);
356  //duplicate duplicate particles (this is a hack which is needed as there are two boundaries, so the doubly periodic images are needed)
357  for (BaseBoundary* it : boundaryHandler)
358  it->createPeriodicParticle(p, particleHandler);
359  //hGridActionsBeforeTimeStep();
362  }
363  for (unsigned int i = particleHandler.getNumberOfObjects(); i >= 1; i--)
364  if (particleHandler.getObject(i - 1)->getPeriodicFromParticle() != nullptr)
365  {
366  while (particleHandler.getObject(i - 1)->getInteractions().size() > 0)
367  {
369  }
371  }
372  setInflowHeight(H);
373  //setHGridNumberOfBucketsToPower();
374  write(std::cout,false);
375  }

References DPMBase::boundaryHandler, DPMBase::checkAndDuplicatePeriodicParticles(), MercuryBase::checkParticleForInteraction(), BaseHandler< T >::copyAndAddObject(), create_inflow_particle(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getInflowHeight(), BaseInteractable::getInteractions(), BaseHandler< T >::getLastObject(), Chute::getMaxInflowParticleRadius(), getNCreated(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseParticle::getPeriodicFromParticle(), BaseParticle::getRadius(), DPMBase::getZMin(), MercuryBase::hGridActionsBeforeTimeLoop(), MercuryBase::hGridActionsBeforeTimeStep(), constants::i, increaseNCreated(), inflowParticle_, DPMBase::interactionHandler, DPMBase::particleHandler, ParticleHandler::removeObject(), InteractionHandler::removeObjectKeepingPeriodics(), Chute::setInflowHeight(), BaseHandler< T >::setStorageCapacity(), DPMBase::setZMax(), Chute::write(), and DPMBase::writeRestartFile().

◆ create_inflow_particle() [1/5]

void SilbertPeriodic::create_inflow_particle ( )
inline
211  {
213  //inflowParticle_.computeMass();
214 
215  //The position components are first stored in a Vec3D, because if you pass them directly into setPosition the compiler is allowed to change the order in which the numbers are generated
216  Vec3D position;
217  position.X = random.getRandomNumber(getXMin(),getXMax());
218  position.Y = random.getRandomNumber(getYMin(),getYMax());
220  inflowParticle_.setPosition(position);
222  if (randomiseSpecies)
223  {
224  const unsigned int indSpecies = floor(
227  }
228  }

References Chute::getInflowHeight(), Chute::getInflowVelocity(), Chute::getMaxInflowParticleRadius(), Chute::getMinInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseParticle::getRadius(), RNG::getRandomNumber(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMin(), inflowParticle_, DPMBase::random, randomiseSpecies, BaseInteractable::setPosition(), BaseParticle::setRadius(), BaseParticle::setSpecies(), BaseInteractable::setVelocity(), DPMBase::speciesHandler, Vec3D::X, Vec3D::Y, and Vec3D::Z.

Referenced by add_flow_particles().

◆ create_inflow_particle() [2/5]

◆ create_inflow_particle() [3/5]

void SilbertPeriodic::create_inflow_particle ( )
inline
211  {
212  P0.Radius = MaxInflowParticleRadius;
213  P0.computeMass(Species);
214 
215  P0.Position.X = random(getXMin()+2.0*P0.Radius,getXMax());
216  P0.Position.Y = random(getYMin()+2.0*P0.Radius,getYMax());
217  P0.Position.Z = random(getZMin()+2.0*P0.Radius,getInflowHeight());
218  P0.Velocity = Vec3D(0.0,0.0,0.0);
219  }

◆ create_inflow_particle() [4/5]

void SilbertPeriodic::create_inflow_particle ( )
inline
265  {
266  P0.setRadius(random.get_RN(MinInflowParticleRadius,MaxInflowParticleRadius));
267  P0.computeMass(Species);
268 
269  P0.getPosition().X = random.get_RN(getXMin()+2.0*P0.getRadius(),getXMax());
270  P0.getPosition().Y = random.get_RN(getYMin()+2.0*P0.getRadius(),getYMax());
271  P0.getPosition().Z = random.get_RN(getZMin()+2.0*P0.getRadius(),getInflowHeight());
272  P0.setVelocity(Vec3D(0.0,0.0,0.0));
273  }

◆ create_inflow_particle() [5/5]

void SilbertPeriodic::create_inflow_particle ( )
inline
379  {
381  //inflowParticle_.computeMass();
382 
383  //The position components are first stored in a Vec3D, because if you pass them directly into setPosition the compiler is allowed to change the order in which the numbers are generated
384  Vec3D position;
385  position.X = random.getRandomNumber(getXMin(), getXMax());
386  position.Y = random.getRandomNumber(getYMin(), getYMax());
388  inflowParticle_.setPosition(position);
390  if (randomiseSpecies)
391  {
392  int indSpecies = floor(random.getRandomNumber(0, speciesHandler.getNumberOfObjects() - 1e-200));
394  }
395  }

References Chute::getInflowHeight(), Chute::getInflowVelocity(), Chute::getMaxInflowParticleRadius(), Chute::getMinInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseParticle::getRadius(), RNG::getRandomNumber(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMin(), inflowParticle_, DPMBase::random, randomiseSpecies, BaseInteractable::setPosition(), BaseParticle::setRadius(), BaseParticle::setSpecies(), BaseInteractable::setVelocity(), DPMBase::speciesHandler, Vec3D::X, Vec3D::Y, and Vec3D::Z.

◆ createBaseSpecies() [1/5]

virtual void SilbertPeriodic::createBaseSpecies ( )
inlinevirtual

◆ createBaseSpecies() [2/5]

virtual void SilbertPeriodic::createBaseSpecies ( )
inlinevirtual

◆ createBaseSpecies() [3/5]

void SilbertPeriodic::createBaseSpecies ( )
inline
86  {
87  //only create once
88  static bool created=false;
89  if (!created) {
91  created = true;
92  for (int i=0; i<get_N(); i++) {
93  if (Particles[i].is_fixed()) Particles[i].indSpecies=1;
94  }
95  }
96  }

References constants::i.

◆ createBaseSpecies() [4/5]

virtual void SilbertPeriodic::createBaseSpecies ( )
inlinevirtual
87  {
88  //only create once
89  static bool created=false;
90  if (!created) {
92  created = true;
93  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++) {
95  }
96  }
97  }

References constants::i.

◆ createBaseSpecies() [5/5]

virtual void SilbertPeriodic::createBaseSpecies ( )
inlinevirtual

◆ fix_hgrid() [1/2]

void SilbertPeriodic::fix_hgrid ( )
inline
66  {
67  //assume 1-2 levels are optimal (which is the case for mono and bidispersed) and set the cell size to min and max
68  // !this is not optimal for polydispersed
69  double minCell = 2.*min(getFixedParticleRadius(),getMinInflowParticleRadius());
70  double maxCell = 2.*max(getFixedParticleRadius(),getMaxInflowParticleRadius());
71  if ((minCell==maxCell)|(minCell==0.)) set_HGRID_max_levels(1);
72  else set_HGRID_max_levels(2);
73  set_HGRID_cell_to_cell_ratio (1.0000001*maxCell/minCell);
74  }

◆ fix_hgrid() [2/2]

void SilbertPeriodic::fix_hgrid ( )
inline
67  {
68  //assume 1-2 levels are optimal (which is the case for mono and bidispersed) and set the cell size to min and max
69  // !this is not optimal for polydispersed
72  if ((minCell==maxCell)|(minCell==0.)) set_HGRID_max_levels(1);
73  else set_HGRID_max_levels(2);
74  set_HGRID_cell_to_cell_ratio (1.0000001*maxCell/minCell);
75  }

◆ get_H() [1/5]

Mdouble SilbertPeriodic::get_H ( )
inline
238  { return getInflowHeight(); }

References Chute::getInflowHeight().

Referenced by SilbertHstop::IsAboveCurve().

◆ get_H() [2/5]

double SilbertPeriodic::get_H ( )
inline
237  { return getInflowHeight(); }

References Chute::getInflowHeight().

◆ get_H() [3/5]

double SilbertPeriodic::get_H ( )
inline
223 {return InflowHeight;}

◆ get_H() [4/5]

Mdouble SilbertPeriodic::get_H ( )
inline
277 {return InflowHeight;}

◆ get_H() [5/5]

Mdouble SilbertPeriodic::get_H ( )
inline
405  { return getInflowHeight(); }

References Chute::getInflowHeight().

◆ getNCreated() [1/3]

int SilbertPeriodic::getNCreated ( ) const
inline
252  {
253  return nCreated_;
254  }

References nCreated_.

Referenced by add_flow_particles().

◆ getNCreated() [2/3]

int SilbertPeriodic::getNCreated ( ) const
inline
261  {
262  return nCreated_;
263  }

References nCreated_.

◆ getNCreated() [3/3]

int SilbertPeriodic::getNCreated ( ) const
inline
435  {
436  return nCreated_;
437  }

References nCreated_.

◆ getSlidingFrictionCoefficientBottom() [1/4]

Mdouble SilbertPeriodic::getSlidingFrictionCoefficientBottom ( )
inline
81  {
82  if (baseSpecies!= nullptr)
83  return baseSpecies->getSlidingFrictionCoefficient();
84  else return species->getSlidingFrictionCoefficient();
85  }

References baseSpecies, and species.

Referenced by PointIsAboveCurve(), readNextArgument(), and set_study().

◆ getSlidingFrictionCoefficientBottom() [2/4]

double SilbertPeriodic::getSlidingFrictionCoefficientBottom ( )
inline
76  {
77  if (speciesHandler.getNumberOfObjects()>1) return speciesHandler.getMixedObject(1,0)->getSlidingFrictionCoefficient();
78  else return getSlidingFrictionCoefficient();
79  }

◆ getSlidingFrictionCoefficientBottom() [3/4]

Mdouble SilbertPeriodic::getSlidingFrictionCoefficientBottom ( )
inline
77  {
78  if (speciesHandler.getNumberOfObjects()>1) return speciesHandler.getMixedObject(1,0)->getSlidingFrictionCoefficient();
79  else return getSlidingFrictionCoefficient();
80  }

◆ getSlidingFrictionCoefficientBottom() [4/4]

Mdouble SilbertPeriodic::getSlidingFrictionCoefficientBottom ( )
inline
93  {
94  if (baseSpecies!= nullptr)
95  return baseSpecies->getSlidingFrictionCoefficient();
96  else return species->getSlidingFrictionCoefficient();
97  }

References baseSpecies, and species.

◆ increaseNCreated() [1/3]

void SilbertPeriodic::increaseNCreated ( )
inline
257  {
258  nCreated_++;
259  }

References nCreated_.

Referenced by add_flow_particles().

◆ increaseNCreated() [2/3]

void SilbertPeriodic::increaseNCreated ( )
inline
266  {
267  nCreated_++;
268  }

References nCreated_.

◆ increaseNCreated() [3/3]

void SilbertPeriodic::increaseNCreated ( )
inline
440  {
441  nCreated_++;
442  }

References nCreated_.

◆ printTime() [1/5]

void SilbertPeriodic::printTime ( )
inline
225  {
226  cout << "t=" << setprecision(3) << left << setw(6) << getTime()
227  << ", tmax=" << setprecision(3) << left << setw(6) << getTimeMax()
228  << ", N=" << setprecision(3) << left << setw(6) << Particles.size()
229  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
230  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
231  << ". " << endl;
232  }

◆ printTime() [2/5]

void SilbertPeriodic::printTime ( )
inline
279  {
280  cout << "t=" << setprecision(3) << left << setw(6) << getTime()
281  << ", tmax=" << setprecision(3) << left << setw(6) << getTimeMax()
282  << ", N=" << setprecision(3) << left << setw(6) << particleHandler.getNumberOfObjects()
283  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
284  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
285  << ". " << endl;
286  }

◆ printTime() [3/5]

void SilbertPeriodic::printTime ( ) const
inlinevirtual

Displays the current simulation time and the maximum simulation duration.

Gets and prints the current simulation time (getTime()) and the currently set maximum simulation time (getTimeMax()) .

Reimplemented from DPMBase.

Reimplemented in vibratedBed.

240  {
241  logger(INFO, "t=%3.6"
242  ", tmax=%3.6"
243  ", N=%3.6",
245  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
246  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
247  }

References ParticleHandler::getNumberOfObjects(), DPMBase::getTime(), DPMBase::getTimeMax(), INFO, logger, and DPMBase::particleHandler.

◆ printTime() [4/5]

void SilbertPeriodic::printTime ( ) const
inlinevirtual

Displays the current simulation time and the maximum simulation duration.

Gets and prints the current simulation time (getTime()) and the currently set maximum simulation time (getTimeMax()) .

Reimplemented from DPMBase.

Reimplemented in vibratedBed.

408  {
409  logger(INFO, "t=%3.6"
410  ", tmax=%3.6"
411  ", N=%3.6"
412  ", theta=%3.6",
414  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
415  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
416  }

References Chute::getChuteAngleDegrees(), ParticleHandler::getNumberOfObjects(), DPMBase::getTime(), DPMBase::getTimeMax(), INFO, logger, and DPMBase::particleHandler.

◆ printTime() [5/5]

void SilbertPeriodic::printTime ( ) const
inlineoverridevirtual

Displays the current simulation time and the maximum simulation duration.

Gets and prints the current simulation time (getTime()) and the currently set maximum simulation time (getTimeMax()) .

Reimplemented from DPMBase.

Reimplemented in vibratedBed.

241  {
242  logger(INFO, "t=%3.6"
243  ", tmax=%3.6"
244  ", N=%3.6"
245  ", theta=3.6",
247  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
248  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
249  }

References Chute::getChuteAngleDegrees(), ParticleHandler::getNumberOfObjects(), DPMBase::getTime(), DPMBase::getTimeMax(), INFO, logger, and DPMBase::particleHandler.

Referenced by SilbertHstop::continueSolve().

◆ readNextArgument() [1/4]

bool SilbertPeriodic::readNextArgument ( int i,
int  argc,
char argv[] 
)
inlinevirtual

Interprets the i^th command-line argument.

Reads, recognises and applies all valid flags passed when starting or restarting a Mercury simulation.

For all of the N = argc (argument count) command line arguments passed when starting/restarting a code (e.g. -tmax, -tmin ...), compares them to the "known" arguments understood by Mercury (note that further recognised arguments can be added in derived classes). If a match is found, the relevant parameter is set to the corresponding value(s) following the flag and true is returned. Otherwise, false is returned.

For instance, if the flag -xmin 0 is passed, the code's second if statement will recognise the flag, convert the subsequent string in argv to a double, and then call the setXMin() function to implement the new value (0) of XMin.

For developers: note the use of strcmp here. This cannot be replaced with a simpler ==, as we are comparing c-style strings (char*), instead of std::string. Thus, == would return equality of the pointers instead of the contents of the string. strcmp returns 0 if the strings are the same, and another number if they are different. This is then implicitly cast to a bool, where 0->false and other numbers will give true. Finally, the !-operator makes sure that the expression in the if-statements are true if the strings are the same, and false otherwise.

Parameters
[in]ithe position of the element that will be read, note that the count starts at 1, as element 0 is the name of the executable
[in]argcnumber of arguments the user has given
[in]*argv[]the command-line arguments the user has given when calling the executable
Returns
true if the argument is successfully read, and false otherwise.

-gravity_ requires three arguments

-restart or -r loads a restart file. By default, it loads <name>.restart. If an argument "arg" is given it loads the file "arg", or "arg".restart (if the ending is not given).

Reimplemented from DPMBase.

250  {
251  if (!strcmp(argv[i], "-muBottom"))
252  {
253  setSlidingFrictionCoefficientBottom(atof(argv[i + 1]));
255  }
256  else return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
257  return true; //returns true if argv[i] is found
258  }

References getSlidingFrictionCoefficientBottom(), constants::i, INFO, logger, Chute::readNextArgument(), and setSlidingFrictionCoefficientBottom().

Referenced by FlowRule::readNextArgument().

◆ readNextArgument() [2/4]

bool SilbertPeriodic::readNextArgument ( int i,
int  argc,
char argv[] 
)
inlinevirtual

Interprets the i^th command-line argument.

Reads, recognises and applies all valid flags passed when starting or restarting a Mercury simulation.

For all of the N = argc (argument count) command line arguments passed when starting/restarting a code (e.g. -tmax, -tmin ...), compares them to the "known" arguments understood by Mercury (note that further recognised arguments can be added in derived classes). If a match is found, the relevant parameter is set to the corresponding value(s) following the flag and true is returned. Otherwise, false is returned.

For instance, if the flag -xmin 0 is passed, the code's second if statement will recognise the flag, convert the subsequent string in argv to a double, and then call the setXMin() function to implement the new value (0) of XMin.

For developers: note the use of strcmp here. This cannot be replaced with a simpler ==, as we are comparing c-style strings (char*), instead of std::string. Thus, == would return equality of the pointers instead of the contents of the string. strcmp returns 0 if the strings are the same, and another number if they are different. This is then implicitly cast to a bool, where 0->false and other numbers will give true. Finally, the !-operator makes sure that the expression in the if-statements are true if the strings are the same, and false otherwise.

Parameters
[in]ithe position of the element that will be read, note that the count starts at 1, as element 0 is the name of the executable
[in]argcnumber of arguments the user has given
[in]*argv[]the command-line arguments the user has given when calling the executable
Returns
true if the argument is successfully read, and false otherwise.

-gravity_ requires three arguments

-restart or -r loads a restart file. By default, it loads <name>.restart. If an argument "arg" is given it loads the file "arg", or "arg".restart (if the ending is not given).

Reimplemented from DPMBase.

419  {
420  if (!strcmp(argv[i], "-muBottom"))
421  {
422  setSlidingFrictionCoefficientBottom(atof(argv[i + 1]));
424  }
425  else if (!strcmp(argv[i], "-oldValues"))
426  {
427  species->setSlidingDissipation(species->getDissipation());
428  logger(INFO, "getSlidingDissipation()=%", species->getSlidingDissipation());
429  }
430  else return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
431  return true; //returns true if argv[i] is found
432  }

References getSlidingFrictionCoefficientBottom(), constants::i, INFO, logger, Chute::readNextArgument(), setSlidingFrictionCoefficientBottom(), and species.

◆ readNextArgument() [3/4]

int SilbertPeriodic::readNextArgument ( unsigned int i,
unsigned int argc,
char argv[] 
)
inline
234  {
235  if (!strcmp(argv[i],"-muBottom")) {
236  setSlidingFrictionCoefficientBottom(atof(argv[i+1]));
237  cout << "muB=" << getSlidingFrictionCoefficientBottom() << endl;
238  } else return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
239  return true; //returns true if argv[i] is found
240  }

References constants::i, and Chute::readNextArgument().

◆ readNextArgument() [4/4]

int SilbertPeriodic::readNextArgument ( unsigned int i,
unsigned int  argc,
char argv[] 
)
inline
288  {
289  if (!strcmp(argv[i],"-muBottom")) {
290  setSlidingFrictionCoefficientBottom(atof(argv[i+1]));
291  cout << "muB=" << getSlidingFrictionCoefficientBottom() << endl;
292  } else return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
293  return true; //returns true if argv[i] is found
294  }

References constants::i, and Chute::readNextArgument().

◆ set_H() [1/5]

void SilbertPeriodic::set_H ( double  new_)
inline

◆ set_H() [2/5]

void SilbertPeriodic::set_H ( double  new_)
inline
222 {InflowHeight=new_; setZMax(InflowHeight);}

◆ set_H() [3/5]

void SilbertPeriodic::set_H ( Mdouble  new_)
inline
232  {
233  setInflowHeight(new_);
235  }

References Chute::getInflowHeight(), Chute::setInflowHeight(), and DPMBase::setZMax().

Referenced by main(), and SilbertPeriodic().

◆ set_H() [4/5]

void SilbertPeriodic::set_H ( Mdouble  new_)
inline
276 {InflowHeight=new_; setZMax(InflowHeight);}

◆ set_H() [5/5]

void SilbertPeriodic::set_H ( Mdouble  new_)
inline

◆ set_study() [1/12]

void SilbertPeriodic::set_study ( )
inline
102  {
103  std::stringstream name;
104  name << "H" << getInflowHeight()
105  << "A" << getChuteAngleDegrees()
106  << "L" << round(100.*getFixedParticleRadius()*2.)/100.
107  << "M" << species->getSlidingFrictionCoefficient()
109  dataFile.setName(name.str().c_str());
110  //set_data_filename();
111  }

References DPMBase::dataFile, Chute::getChuteAngleDegrees(), Chute::getFixedParticleRadius(), Chute::getInflowHeight(), getSlidingFrictionCoefficientBottom(), units::name, helpers::round(), File::setName(), and species.

Referenced by FlowRule::run(), vibratedBed::run(), and set_study().

◆ set_study() [2/12]

void SilbertPeriodic::set_study ( )
inline
98  {
99  stringstream name;
100  name << "H" << getInflowHeight()
101  << "A" << getChuteAngleDegrees()
102  << "L" << round(100.*getFixedParticleRadius()*2.)/100.
103  << "M" << getSlidingFrictionCoefficient()
105  setName(name.str().c_str());
106  set_data_filename();
107  }

References units::name, and helpers::round().

◆ set_study() [3/12]

void SilbertPeriodic::set_study ( )
inline
99  {
100  stringstream name;
101  name << "H" << getInflowHeight()
102  << "A" << getChuteAngleDegrees()
103  << "L" << round(100.*getFixedParticleRadius()*2.)/100.
104  << "M" << getSlidingFrictionCoefficient()
106  setName(name.str().c_str());
107  set_data_filename();
108  }

References units::name, and helpers::round().

◆ set_study() [4/12]

void SilbertPeriodic::set_study ( )
inline
115  {
116  std::stringstream name;
117  name << "H" << getInflowHeight()
118  << "A" << getChuteAngleDegrees()
119  << "L" << round(100.*getFixedParticleRadius()*2.)/100.
120  << "M" << species->getSlidingFrictionCoefficient()
122  setName(name.str().c_str());
123  //set_data_filename();
124  }

References Chute::getChuteAngleDegrees(), Chute::getFixedParticleRadius(), Chute::getInflowHeight(), getSlidingFrictionCoefficientBottom(), units::name, helpers::round(), DPMBase::setName(), and species.

◆ set_study() [5/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
101  {
102  logger(INFO, "using mu=0, r=0.5");
103  species->setCollisionTimeAndRestitutionCoefficient
104  (50. * getTimeStep(), 0.5, 1);
105  std::stringstream name;
106  name << "H" << getInflowHeight()
107  << "A" << getChuteAngleDegrees()
108  << "L" << round(100. * getFixedParticleRadius() * 2.) / 100.;
109  setName(name.str().c_str());
110  }

References Chute::getChuteAngleDegrees(), Chute::getFixedParticleRadius(), Chute::getInflowHeight(), DPMBase::getTimeStep(), INFO, logger, units::name, helpers::round(), DPMBase::setName(), and species.

Referenced by PointIsAboveCurve().

◆ set_study() [6/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
113  {
114  //S=0-5: lambda = 0, 3./6., 4./6., 5./6., 1, 2
115  //S=6-8: mu = 0, 1, inf
116  //S=9-13: mub = 0,1,inf,1/4,1/8
117  //S=14-15: mu = 1/4, 1/8
118  //S=16-19: lambda = 1./6., 2./6., 1.5, 4
119  //S=21-25: mub=1/16,1/32,1/64,1/128,1/1024
120  //S=26-28: lambda=1/2, mub=1/16,1/128,1/1024
121  //S=29-32: lambda=0, mub=1/16,1/128,1/1024,0
122 
123  if (study_num < 6) {
124  // set mu_all = 0.5, vary lambda
125  double Lambdas[] = {0, 3./6., 4./6., 5./6., 1, 2};
126  setFixedParticleRadius(Lambdas[study_num]/2.);
127  } else {
128  //If study_num is complete quit
129  logger(VERBOSE, "Study is complete ");
130  exit(0);
131  }
132  //Note make sure h and a is defined
133  set_study();
134  }

References logger, set_study(), Chute::setFixedParticleRadius(), and VERBOSE.

◆ set_study() [7/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
109  {
110  //S=0-5: lambda = 0, 3./6., 4./6., 5./6., 1, 2
111  //S=6-8: mu = 0, 1, inf
112  //S=9-13: mub = 0,1,inf,1/4,1/8
113  //S=14-15: mu = 1/4, 1/8
114  //S=16-19: lambda = 1./6., 2./6., 1.5, 4
115  //S=21-25: mub=1/16,1/32,1/64,1/128,1/1024
116  //S=26-28: lambda=1/2, mub=1/16,1/128,1/1024
117  //S=29-32: lambda=0, mub=1/16,1/128,1/1024,0
118 
119  if (study_num < 6) {
120  // set mu_all = 0.5, vary lambda
121  double Lambdas[] = {0, 3./6., 4./6., 5./6., 1, 2};
122  setFixedParticleRadius(Lambdas[study_num]/2.);
123  } else {
124  //If study_num is complete quit
125  cout << "Study is complete " << endl;
126  exit(0);
127  }
128  //Note make sure h and a is defined
129  set_study();
130  }

◆ set_study() [8/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
110  {
111  //S=0-5: lambda = 0, 3./6., 4./6., 5./6., 1, 2
112  //S=6-8: mu = 0, 1, inf
113  //S=9-13: mub = 0,1,inf,1/4,1/8
114  //S=14-15: mu = 1/4, 1/8
115  //S=16-19: lambda = 1./6., 2./6., 1.5, 4
116  //S=21-25: mub=1/16,1/32,1/64,1/128,1/1024
117  //S=26-28: lambda=1/2, mub=1/16,1/128,1/1024
118  //S=29-32: lambda=0, mub=1/16,1/128,1/1024,0
119 
120  if (study_num < 6) {
121  // set mu_all = 0.5, vary lambda
122  Mdouble Lambdas[] = {0, 3./6., 4./6., 5./6., 1, 2};
123  setFixedParticleRadius(Lambdas[study_num]/2.);
124  setSlidingFrictionCoefficient(0.5);
125  } else if (study_num < 9) { //Case 6,7,8
126  // set lambda = 1, vary mu_all
127  Mdouble MuAll[] = {0, 1., 1e20};
128  setSlidingFrictionCoefficient(MuAll[study_num-6]);
130  } else if (study_num < 12) { //Case 9,10,11
131  // set lambda = 1, mu_all = 0.5, vary mu_bottom
132  Mdouble MuBottom[] = {0, 1., 1e20};
133  setSlidingFrictionCoefficient(0.5);
134  setSlidingFrictionCoefficientBottom(MuBottom[study_num-9]);
136  } else if (study_num < 14) { //Case 12,13
137  // set lambda = 1, mu_all = 0.5, vary mu_bottom
138  Mdouble MuBottom[] = {0.25, 0.125};
139  setSlidingFrictionCoefficient(0.5);
140  setSlidingFrictionCoefficientBottom(MuBottom[study_num-12]);
142  } else if (study_num < 16) { //Case 14,15
143  // set lambda = 1, vary mu_all
144  Mdouble MuAll[] = {0.25, 0.125};
145  setSlidingFrictionCoefficient(MuAll[study_num-14]);
147  } else if (study_num < 21) { //Case 16,17,18,19,20
148  // set mu_all = 0.5, vary lambda
149  Mdouble Lambdas[] = {1./6., 2./6., 1.5, 4, 1./12};
150  setFixedParticleRadius(Lambdas[study_num-16]/2.);
151  setSlidingFrictionCoefficient(0.5);
152  } else if (study_num < 26) { //Case 21 22 23 24 25
153  // set lambda = 1, mu_all = 0.5, vary mu_bottom
154  Mdouble MuBottom[] = {1./16.,1./32.,1./64.,1./128.,1./1024.};
155  setSlidingFrictionCoefficient(0.5);
156  setSlidingFrictionCoefficientBottom(MuBottom[study_num-21]);
158  } else if (study_num < 29) { //Case 26 27 28
159  // set lambda = 1/2, mu_all = 0.5, vary mu_bottom
160  Mdouble MuBottom[] = {1./16.,1./128.,1./1024.};
161  setSlidingFrictionCoefficient(0.5);
162  setSlidingFrictionCoefficientBottom(MuBottom[study_num-26]);
164  } else if (study_num < 33) { //Case 29 30 31 32
165  // set lambda = 0, mu_all = 0.5, vary mu_bottom
166  Mdouble MuBottom[] = {1./16.,1./128.,1./1024.,0};
167  setSlidingFrictionCoefficient(0.5);
168  setSlidingFrictionCoefficientBottom(MuBottom[study_num-29]);
170  } else if (study_num < 37) { //Case 33-36
171  cout << "S" << study_num << endl;
172  // set lambda = 1, mu_b = 0.5, vary mu
173  Mdouble Mu[] = {1e20,1,1./64,0};
174  setSlidingFrictionCoefficient(Mu[study_num-33]);
177  } else {
178  //If study_num is complete quit
179  cout << "Study is complete " << endl;
180  exit(0);
181  }
182  //Note make sure h and a is defined
183  set_study();
184  }

◆ set_study() [9/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
Todo:
Thomas: Hertzian does not appear in the restart file
Todo:
TW: can we switch species from SlidingFriction to Friction only in the case rolling friction is needed?
Todo:
turn on rolling friction only at the wall
126  {
127  //S=0-5: lambda = 0, 3./6., 4./6., 5./6., 1, 2
128  //S=6-8: mu = 0, 1, inf
129  //S=9-13: mub = 0,1,inf,1/4,1/8
130  //S=14-15: mu = 1/4, 1/8
131  //S=16-19: lambda = 1./6., 2./6., 1.5, 4
132  //S=21-25: mub=1/16,1/32,1/64,1/128,1/1024
133  //S=26-28: lambda=1/2, mub=1/16,1/128,1/1024
134  //S=29-32: lambda=0, mub=1/16,1/128,1/1024,0
135  //Case 37 set getSlidingDissipation()=0
136  //Case 38 set eps=0.97
137  //Case 39 set hertzian = true
138  //Case 40, 41, 42: set Foerster glass, Lorenz steel, Lorenz glassv
139  //Case 43, 44, 45, 46: set Silbert, Foerster glass, Lorenz steel, Lorenz glass with rolling friction
140  logger(INFO, "Study %", study_num);
141 
142  if (study_num < 6) {
143  // set mu_all = 0.5, vary lambda
144  Mdouble Lambdas[] = {0, 3./6., 4./6., 5./6., 1, 2};
145  setFixedParticleRadius(Lambdas[study_num]/2.);
146  species->setSlidingFrictionCoefficient(0.5);
147  } else if (study_num < 9) { //Case 6,7,8
148  // set lambda = 1, vary mu_all
149  Mdouble MuAll[] = {0, 1., 1e20};
150  species->setSlidingFrictionCoefficient(MuAll[study_num-6]);
152  } else if (study_num < 12) { //Case 9,10,11
153  // set lambda = 1, mu_all = 0.5, vary mu_bottom
154  Mdouble MuBottom[] = {0, 1., 1e20};
155  species->setSlidingFrictionCoefficient(0.5);
156  setSlidingFrictionCoefficientBottom(MuBottom[study_num-9]);
158  } else if (study_num < 14) { //Case 12,13
159  // set lambda = 1, mu_all = 0.5, vary mu_bottom
160  Mdouble MuBottom[] = {0.25, 0.125};
161  species->setSlidingFrictionCoefficient(0.5);
162  setSlidingFrictionCoefficientBottom(MuBottom[study_num-12]);
164  } else if (study_num < 16) { //Case 14,15
165  // set lambda = 1, vary mu_all
166  Mdouble MuAll[] = {0.25, 0.125};
167  species->setSlidingFrictionCoefficient(MuAll[study_num-14]);
169  } else if (study_num < 21) { //Case 16,17,18,19,20
170  // set mu_all = 0.5, vary lambda
171  Mdouble Lambdas[] = {1./6., 2./6., 1.5, 4, 1./12};
172  setFixedParticleRadius(Lambdas[study_num-16]/2.);
173  species->setSlidingFrictionCoefficient(0.5);
174  } else if (study_num < 26) { //Case 21 22 23 24 25
175  // set lambda = 1, mu_all = 0.5, vary mu_bottom
176  Mdouble MuBottom[] = {1./16.,1./32.,1./64.,1./128.,1./1024.};
177  species->setSlidingFrictionCoefficient(0.5);
178  setSlidingFrictionCoefficientBottom(MuBottom[study_num-21]);
180  } else if (study_num < 29) { //Case 26 27 28
181  // set lambda = 1/2, mu_all = 0.5, vary mu_bottom
182  Mdouble MuBottom[] = {1./16.,1./128.,1./1024.};
183  species->setSlidingFrictionCoefficient(0.5);
184  setSlidingFrictionCoefficientBottom(MuBottom[study_num-26]);
186  } else if (study_num < 33) { //Case 29 30 31 32
187  // set lambda = 0, mu_all = 0.5, vary mu_bottom
188  Mdouble MuBottom[] = {1./16.,1./128.,1./1024.,0};
189  species->setSlidingFrictionCoefficient(0.5);
190  setSlidingFrictionCoefficientBottom(MuBottom[study_num-29]);
192  } else if (study_num < 37) { //Case 33-36
193  logger(INFO, "S %", study_num);
194  // set lambda = 1, mu_b = 0.5, vary mu
195  Mdouble Mu[] = {1e20,1,1./64,0};
196  species->setSlidingFrictionCoefficient(Mu[study_num-33]);
199  } else if (study_num < 38) { //Case 37
200  // set getSlidingDissipation()=0
201  species->setSlidingDissipation(0);
202  } else if (study_num < 39) { //Case 38
203  // set eps=0.97
204  Mdouble eps = 0.97;
205  species->setStiffnessAndRestitutionCoefficient(species->getStiffness(), eps, 1);
206  species->setSlidingDissipation(species->getDissipation());
207  } else if (study_num < 40)
208  { //Case 39
209  // set hertzian = true
210  logger(INFO, "Hertzian implementation has been changed");
211  exit(-1);
212  //set_Hertzian(true);
214  } else if (study_num < 43) { //Case 40, 41, 42
215  // set Foerster glass, Lorenz steel, Lorenz glass
216  Mdouble eps[] = {0.97 , 0.95 , 0.972};
217  Mdouble beta[]= {0.44 , 0.32 , 0.25 };
218  Mdouble mu[] = {0.092, 0.099, 0.177};
219  species->setSlidingFrictionCoefficient(mu[study_num-40]);
220  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
221  (50.*getTimeStep(), eps[study_num-40], beta[study_num-40], 1);
222  } else if (study_num < 47) { //Case 43, 44, 45, 46
223  // set Silbert, Foerster glass, Lorenz steel, Lorenz glass with rolling friction
224  Mdouble eps[] = {0.97 , 0.95 , 0.972};
225  Mdouble beta[]= {0.44 , 0.32 , 0.25 };
226  Mdouble mu[] = {0.092, 0.099, 0.177};
227  if (study_num!=43) {
228  species->setSlidingFrictionCoefficient(mu[study_num-44]);
229  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
230  (50.*getTimeStep(), eps[study_num-44], beta[study_num-44], 1);
231  }
233  species->setRollingStiffness(0.4*species->getStiffness());
234  species->setRollingFrictionCoefficient(0.05);
235  } else if (study_num < 48) { //Case 47
236  // set lambda = 1, mu_all = 0.5, vary mu_half
237  Mdouble MuHalf[] = {0};
238  species->setSlidingFrictionCoefficient(MuHalf[study_num-47]);
241  randomiseSpecies = true;
242  } else if (study_num < 52) { //Case 48, 49, 50, 51
243  // set vary eps
244  Mdouble eps[] = {0.001, 0.01, 0.1, 1};
245  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
246  (50.*getTimeStep(), eps[study_num-48], eps[study_num-48], 1);
247  species->setSlidingFrictionCoefficient(0.0);
248  } else if (study_num < 53) { //Case 52
250  } else if (study_num < 54) { //Case 53
251  logger(INFO, "using mu=0.3, r=0.1");
252  species->setSlidingFrictionCoefficient(0.3);
253  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
254  (50.*getTimeStep(),0.1,0.1,1);
255  } else if (study_num < 55) { //Case 54
256  logger(INFO, "using mu=0.3, r=0.88");
257  species->setSlidingFrictionCoefficient(0.3);
258  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
259  (50.*getTimeStep(),0.88,0.88,1);
260  } else
261  {
262  //If study_num is complete quit
263  logger(VERBOSE, "Study is complete ");
264  exit(0);
265  }
266  //Note make sure h and a is defined
267  if (study_num < 37 || (study_num>=53&&study_num<=55))
268  {
269  set_study();
270  }
271  else
272  {
273  std::stringstream name;
274  name << "S" << study_num;
275  dataFile.setName(name.str().c_str());
276  //set_data_filename();
277  }
278 
279  }

References mathsFunc::beta(), DPMBase::dataFile, DPMBase::getTimeStep(), INFO, logger, units::name, randomiseSpecies, set_study(), Chute::setFixedParticleRadius(), File::setName(), setSlidingFrictionCoefficientBottom(), species, and VERBOSE.

◆ set_study() [10/12]

void SilbertPeriodic::set_study ( std::vector< int study_num)
inline
136  {
137  double Heights[] = {10, 20, 30, 40};
138  double Angles[] = {20, 22, 24, 26, 28, 30, 40, 50, 60};
139  setInflowHeight(Heights[study_num[1]-1]);
140  setChuteAngle(Angles[study_num[2]-1]);
141  set_study(study_num[0]);
142  }

References set_study(), Chute::setChuteAngle(), and Chute::setInflowHeight().

◆ set_study() [11/12]

void SilbertPeriodic::set_study ( vector< int study_num)
inline
132  {
133  double Heights[] = {10, 20, 30, 40};
134  double Angles[] = {20, 22, 24, 26, 28, 30, 40, 50, 60};
135  setInflowHeight(Heights[study_num[1]-1]);
136  setChuteAngle(Angles[study_num[2]-1]);
137  set_study(study_num[0]);
138  }

◆ set_study() [12/12]

void SilbertPeriodic::set_study ( vector< int study_num)
inline
186  {
187  Mdouble Heights[] = {10, 20, 30, 40};
188  Mdouble Angles[] = {20, 22, 24, 26, 28, 30, 40, 50, 60};
189  setInflowHeight(Heights[study_num[1]-1]);
190  setChuteAngle(Angles[study_num[2]-1]);
191  set_study(study_num[0]);
192  }

◆ setSlidingFrictionCoefficientBottom() [1/4]

void SilbertPeriodic::setSlidingFrictionCoefficientBottom ( double  new_)
inline
81  {
83  speciesHandler.getMixedObject(1, 0)->setSlidingFrictionCoefficient(new_);
84  }

◆ setSlidingFrictionCoefficientBottom() [2/4]

void SilbertPeriodic::setSlidingFrictionCoefficientBottom ( Mdouble  new_)
inline
86  {
88  baseSpecies->setSlidingFrictionCoefficient(new_);
89  }

References baseSpecies, and createBaseSpecies().

Referenced by readNextArgument(), and set_study().

◆ setSlidingFrictionCoefficientBottom() [3/4]

void SilbertPeriodic::setSlidingFrictionCoefficientBottom ( Mdouble  new_)
inline
82  {
84  speciesHandler.getMixedObject(1, 0)->setSlidingFrictionCoefficient(new_);
85  }

◆ setSlidingFrictionCoefficientBottom() [4/4]

void SilbertPeriodic::setSlidingFrictionCoefficientBottom ( Mdouble  new_)
inline
98  {
100  baseSpecies->setSlidingFrictionCoefficient(new_);
101  }

References baseSpecies, and createBaseSpecies().

◆ setupInitialConditions() [1/5]

void SilbertPeriodic::setupInitialConditions ( )
inlinevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overriden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

149  {
150  //fix_hgrid();
151  //set_Nmax(particleHandler.getNumberOfObjects()+getChuteLength()*getChuteWidth()*getZMax());//why is this line needed?
152 
153  createBottom();
154  //~ write(std::cout,false);
155  //cout << "correct fixed" << endl;
157  for (int i=0; i<particleHandler.getNumberOfObjects(); i++)
160  }
161 
162  //set_NWall(1);
163  InfiniteWall w0;
164  if (getFixedParticleRadius()) {
165  w0.set(Vec3D(0,0,-1), Vec3D(0,0,-3.4* getMaxInflowParticleRadius()));
166  } else {
167  w0.set(Vec3D(0,0,-1), Vec3D(0,0,0));
168  }
170 
171  PeriodicBoundary b0;//set_NWallPeriodic(2);
172  b0.set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
174  b0.set(Vec3D( 0.0, 1.0, 0.0), getYMin(), getYMax());
177 
178 // std::cout << std::endl << "Status before solve:" << std::endl;
179 // std::cout
180 // << "tc=" << getCollisionTime()
181 // << ", eps=" << getRestitutionCoefficient()
182 // //<< ", vmax=" << getMaximumVelocity()
183 // << ", getInflowHeight()/zmax=" << getInflowHeight()/getZMax()
184 // << std::endl << std::endl;
185  //~ timer.set(t,tmax);
186 
187  //optimize number of buckets
188  //std::cout << "Nmax" << get_Nmax() << std::endl;
189  //setHGridNumberOfBucketsToPower(particleHandler.getNumberOfObjects()*1.5);
190  }

References add_flow_particles(), DPMBase::boundaryHandler, BaseHandler< T >::copyAndAddObject(), Chute::createBottom(), Chute::getFixedParticleRadius(), Chute::getMaxInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), constants::i, BaseParticle::isFixed(), DPMBase::particleHandler, PeriodicBoundary::set(), InfiniteWall::set(), BaseParticle::setSpecies(), DPMBase::speciesHandler, and DPMBase::wallHandler.

◆ setupInitialConditions() [2/5]

void SilbertPeriodic::setupInitialConditions ( )
inlinevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overriden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

145  {
146  fix_hgrid();
147  set_Nmax(get_N()+getChuteLength()*getChuteWidth()*getZMax());//why is this line needed?
148 
149  createBottom();
150  //~ write(std::cout,false);
151  //cout << "correct fixed" << endl;
152  if (Species.size()>1) {
153  for (int i=0; i<get_N(); i++)
154  if (Particles[i].is_fixed())
155  Particles[i].indSpecies=1;
156  }
157 
158  set_NWall(1);
159  if (getFixedParticleRadius()) {
160  wallHandler.getObject(0)->set(Vec3D(0,0,-1), 3.4*MaxInflowParticleRadius);
161  } else {
162  wallHandler.getObject(0)->set(Vec3D(0,0,-1), 0.);
163  }
164 
165  set_NWallPeriodic(2);
166  WallsPeriodic[0].set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
167  WallsPeriodic[1].set(Vec3D( 0.0, 1.0, 0.0), getYMin(), getYMax());
168 
170 
171  cout << endl << "Status before solve:" << endl;
172  cout
173  << "tc=" << getCollisionTime()
174  << ", eps=" << getRestitutionCoefficient()
175  << ", vmax=" << getMaximumVelocity()
176  << ", InflowHeight/zmax=" << getInflowHeight()/getZMax()
177  << endl << endl;
178  //~ timer.set(t,tmax);
179 
180  //optimize number of buckets
181  cout << "Nmax" << get_Nmax() << endl;
182  set_HGRID_num_buckets_to_power(get_N()*1.5);
183  }

References helpers::getMaximumVelocity(), and constants::i.

◆ setupInitialConditions() [3/5]

void SilbertPeriodic::setupInitialConditions ( )
inlinevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overriden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

199  {
200  fix_hgrid();
201  particleHandler.set_StorageCapacity(particleHandler.getNumberOfObjects()+getChuteLength()*getChuteWidth()*getZMax());//why is this line needed?
202 
203  createBottom();
204  //~ write(std::cout,false);
205  //cout << "correct fixed" << endl;
206  if (Species.size()>1) {
207  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++)
210  }
211 
212  set_NWall(1);
213  if (getFixedParticleRadius()) {
214  wallHandler.getObject(0)->set(Vec3D(0,0,-1), 3.4*MaxInflowParticleRadius);
215  } else {
216  wallHandler.getObject(0)->set(Vec3D(0,0,-1), 0.);
217  }
218 
219  set_NWallPeriodic(2);
220  WallsPeriodic[0].set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
221  WallsPeriodic[1].set(Vec3D( 0.0, 1.0, 0.0), getYMin(), getYMax());
222 
224 
225  cout << endl << "Status before solve:" << endl;
226  cout
227  << "tc=" << getCollisionTime()
228  << ", eps=" << getRestitutionCoefficient()
229  << ", vmax=" << getMaximumVelocity()
230  << ", InflowHeight/zmax=" << getInflowHeight()/getZMax()
231  << endl << endl;
232  //~ timer.set(t,tmax);
233 
234  //optimize number of buckets
235  cout << "Nmax" << particleHandler.getStorageCapacity() << endl;
236  set_HGRID_num_buckets_to_power(particleHandler.getNumberOfObjects()*1.5);
237  }

References helpers::getMaximumVelocity(), and constants::i.

◆ setupInitialConditions() [4/5]

void SilbertPeriodic::setupInitialConditions ( )
inlinevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overriden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

todo{I(Dinant) had to clear the WallHandler to prevent it from inserting the same wall twice, why?}

Reimplemented from DPMBase.

286  {
287  //fix_hgrid();
289 
290  createBottom();
291  //~ write(std::cout,false);
292  //cout << "correct fixed" << endl;
294  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++)
297  }
298 
300  wallHandler.clear();
301  InfiniteWall w0;
303  if (getFixedParticleRadius()) {
304  w0.set(Vec3D(0,0,-1), Vec3D(0,0,-3.4* getMaxInflowParticleRadius()));
305  } else {
306  w0.set(Vec3D(0,0,-1), Vec3D(0,0,0));
307  }
309 
310  PeriodicBoundary b0;
311  b0.set(Vec3D(1.0, 0.0, 0.0), getXMin(), getXMax());
313  b0.set(Vec3D(0.0, 1.0, 0.0), getYMin(), getYMax());
315 
317 
318  logger(INFO, "\nStatus before solve:");
319 // std::cout
320 // << "tc=" << getCollisionTime()
321 // << ", eps=" << getRestitutionCoefficient()
322 // << ", vmax=" << getInflowParticle()->calculateMaximumVelocity(getSpecies())
323 // << ", inflowHeight/zMax=" << getInflowHeight()/getZMax()
324 // << std::endl << std::endl;
325  //~ timer.set(t,tmax);
326 
327  //optimize number of buckets
329  //setHGridNumberOfBucketsToPower(particleHandler.getNumberOfObjects()*1.5);
330  }

References add_flow_particles(), DPMBase::boundaryHandler, BaseHandler< T >::clear(), BaseHandler< T >::copyAndAddObject(), Chute::createBottom(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getFixedParticleRadius(), Chute::getMaxInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseHandler< T >::getStorageCapacity(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), constants::i, INFO, BaseParticle::isFixed(), logger, DPMBase::particleHandler, PeriodicBoundary::set(), InfiniteWall::set(), BaseParticle::setSpecies(), BaseWall::setSpecies(), BaseHandler< T >::setStorageCapacity(), DPMBase::speciesHandler, and DPMBase::wallHandler.

◆ setupInitialConditions() [5/5]

void SilbertPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overriden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

todo{I(Dinant) had to clear the WallHandler to prevent it from inserting the same wall twice, why?}

Reimplemented from DPMBase.

116  {
117  //fix_hgrid();
119 
120  createBottom();
121  //~ write(std::cout,false);
122  //cout << "correct fixed" << endl;
124  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++)
127  }
128 
130  wallHandler.clear();
131  InfiniteWall w0;
133  {
134  w0.set(Vec3D(0, 0, -1), Vec3D(0, 0, -3.4 * getMaxInflowParticleRadius()));
135  }
136  else
137  {
138  w0.set(Vec3D(0, 0, -1), Vec3D(0, 0, 0));
139  }
141 
142  PeriodicBoundary b0;
143  b0.set(Vec3D(1.0, 0.0, 0.0), getXMin(), getXMax());
145  b0.set(Vec3D(0.0, 1.0, 0.0), getYMin(), getYMax());
147 
149 
150  logger(INFO, "\nStatus before solve:");
151 // std::cout
152 // << "tc=" << getCollisionTime()
153 // << ", eps=" << getRestitutionCoefficient()
154 // << ", vmax=" << getInflowParticle()->calculateMaximumVelocity(getSpecies())
155 // << ", inflowHeight/zMax=" << getInflowHeight()/getZMax()
156 // << std::endl << std::endl;
157  //~ timer.set(t,tmax);
158 
159  //optimize number of buckets
161  //setHGridNumberOfBucketsToPower(particleHandler.getNumberOfObjects()*1.5);
162  }

References add_flow_particles(), DPMBase::boundaryHandler, BaseHandler< T >::clear(), BaseHandler< T >::copyAndAddObject(), Chute::createBottom(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getFixedParticleRadius(), Chute::getMaxInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseHandler< T >::getStorageCapacity(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), constants::i, INFO, BaseParticle::isFixed(), logger, DPMBase::particleHandler, PeriodicBoundary::set(), InfiniteWall::set(), BaseParticle::setSpecies(), BaseHandler< T >::setStorageCapacity(), DPMBase::speciesHandler, and DPMBase::wallHandler.

Member Data Documentation

◆ baseSpecies [1/2]

◆ baseSpecies [2/2]

LinearViscoelasticFrictionMixedSpecies* SilbertPeriodic::baseSpecies

◆ inflowParticle_

◆ nCreated_

int SilbertPeriodic::nCreated_

◆ randomiseSpecies

bool SilbertPeriodic::randomiseSpecies

◆ species [1/2]

◆ species [2/2]

LinearViscoelasticFrictionSpecies* SilbertPeriodic::species

The documentation for this class was generated from the following files:
SilbertPeriodic::randomiseSpecies
bool randomiseSpecies
Definition: flowRuleDiego_HeightAngle.cpp:262
BaseHandler::getStorageCapacity
unsigned int getStorageCapacity() const
Gets the storage capacity of this BaseHandler.
Definition: BaseHandler.h:662
SilbertPeriodic::fix_hgrid
void fix_hgrid()
Definition: obsolete_codes/GlasPeriodic.h:66
DPMBase::setName
void setName(const std::string &name)
Allows to set the name of all the files (ene, data, fstat, restart, stat)
Definition: DPMBase.cc:420
SilbertPeriodic::inflowParticle_
SphericalParticle inflowParticle_
Definition: flowRuleDiego_HeightAngle.cpp:263
File::setFileType
void setFileType(FileType fileType)
Sets the type of file needed to write into or read from. File::fileType_.
Definition: File.cc:215
Chute::getMinInflowParticleRadius
Mdouble getMinInflowParticleRadius() const
returns the minimum radius of inflow particles
Definition: Chute.cc:865
LinearViscoelasticFrictionSpecies
Species< LinearViscoelasticNormalSpecies, FrictionSpecies > LinearViscoelasticFrictionSpecies
Definition: LinearViscoelasticFrictionSpecies.h:34
MercuryBase::hGridActionsBeforeTimeStep
void hGridActionsBeforeTimeStep() override
Performs all necessary actions before a time-step, like updating the particles and resetting all the ...
Definition: MercuryBase.cc:323
DPMBase::setTimeStep
void setTimeStep(Mdouble newDt)
Sets a new value for the simulation time step.
Definition: DPMBase.cc:1225
SilbertPeriodic::species
LinearViscoelasticSpecies * species
Definition: flowRuleDiego_HeightAngle.cpp:265
SilbertPeriodic::getSlidingFrictionCoefficientBottom
Mdouble getSlidingFrictionCoefficientBottom()
Definition: GlasPeriodic.h:81
DPMBase::getTimeStep
Mdouble getTimeStep() const
Returns the simulation time step.
Definition: DPMBase.cc:1241
Chute::readNextArgument
bool readNextArgument(int &i, int argc, char *argv[]) override
This method can be used for reading object properties from a string.
Definition: Chute.cc:510
constants::pi
const Mdouble pi
Definition: ExtendedMath.h:45
Chute::getChuteAngleDegrees
Mdouble getChuteAngleDegrees() const
Returns the chute angle (in degrees)
Definition: Chute.cc:743
Chute::setChuteAngleAndMagnitudeOfGravity
void setChuteAngleAndMagnitudeOfGravity(Mdouble chuteAngle, Mdouble gravity)
Sets gravity vector according to chute angle (in degrees)
Definition: Chute.cc:716
Chute::getMaxInflowParticleRadius
Mdouble getMaxInflowParticleRadius() const
Returns the maximum radius of inflow particles.
Definition: Chute.cc:874
BaseParticle::getPeriodicFromParticle
BaseParticle * getPeriodicFromParticle() const
Returns the 'original' particle this one's a periodic copy of.
Definition: BaseParticle.h:341
SilbertPeriodic::create_inflow_particle
void create_inflow_particle()
Definition: flowRuleDiego_HeightAngle.cpp:210
DPMBase::getXMax
Mdouble getXMax() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax.
Definition: DPMBase.h:607
BaseInteractable::setPosition
void setPosition(const Vec3D &position)
Sets the position of this BaseInteractable.
Definition: BaseInteractable.h:239
Chute::setInflowVelocity
void setInflowVelocity(Mdouble inflowVelocity)
Sets the average inflow velocity.
Definition: Chute.cc:910
Chute::setInflowHeight
void setInflowHeight(Mdouble inflowHeight)
Sets maximum inflow height (Z-direction)
Definition: Chute.cc:884
logger
Logger< MERCURY_LOGLEVEL > logger("MercuryKernel")
Definition of different loggers with certain modules. A user can define its own custom logger here.
DPMBase::random
RNG random
This is a random generator, often used for setting up the initial conditions etc.....
Definition: DPMBase.h:1390
ParticleHandler::getNumberOfObjects
unsigned int getNumberOfObjects() const override
Returns the number of objects in the container. In parallel code this practice is forbidden to avoid ...
Definition: ParticleHandler.cc:1315
Vec3D::X
Mdouble X
the vector components
Definition: Vector.h:65
MercuryBase::checkParticleForInteraction
bool checkParticleForInteraction(const BaseParticle &P) final
Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle.
Definition: MercuryBase.cc:594
SpeciesHandler::getMixedObject
std::enable_if<!std::is_pointer< typename U::MixedSpeciesType >::value, typename U::MixedSpeciesType * >::type getMixedObject(const U *S, const U *T)
Definition: SpeciesHandler.h:74
SilbertPeriodic::createBaseSpecies
virtual void createBaseSpecies()
Definition: flowRuleDiego_HeightAngle.cpp:89
Chute::setChuteWidth
void setChuteWidth(Mdouble chuteWidth)
Sets the chute width (Y-direction)
Definition: Chute.cc:966
FileType::NO_FILE
@ NO_FILE
file will not be created/read
DPMBase::restartFile
File restartFile
An instance of class File to handle in- and output into a .restart file.
Definition: DPMBase.h:1451
DPMBase::writeRestartFile
virtual void writeRestartFile()
Stores all the particle data for current save time step to a "restart" file, which is a file simply i...
Definition: DPMBase.cc:2854
INFO
LL< Log::INFO > INFO
Info log level.
Definition: Logger.cc:55
Chute::setChuteAngle
void setChuteAngle(Mdouble chuteAngle)
Sets gravity vector according to chute angle (in degrees)
Definition: Chute.cc:695
BaseHandler::setStorageCapacity
void setStorageCapacity(const unsigned int N)
Sets the storage capacity of this BaseHandler.
Definition: BaseHandler.h:669
BaseBoundary
Definition: BaseBoundary.h:49
BaseParticle::setRadius
virtual void setRadius(Mdouble radius)
Sets the particle's radius_ (and adjusts the mass_ accordingly, based on the particle's species)
Definition: BaseParticle.cc:542
Vec3D
Definition: Vector.h:50
MULTILAYER
@ MULTILAYER
Definition: Chute.h:53
DPMBase::fStatFile
File fStatFile
An instance of class File to handle in- and output into a .fstat file.
Definition: DPMBase.h:1441
DPMBase::getYMin
Mdouble getYMin() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin.
Definition: DPMBase.h:613
DPMBase::setZMax
void setZMax(Mdouble newZMax)
Sets the value of ZMax, the upper bound of the problem domain in the z-direction.
Definition: DPMBase.cc:1208
Mdouble
double Mdouble
Definition: GeneralDefine.h:34
DPMBase::boundaryHandler
BoundaryHandler boundaryHandler
An object of the class BoundaryHandler which concerns insertion and deletion of particles into or fro...
Definition: DPMBase.h:1410
Chute::setRoughBottomType
void setRoughBottomType(RoughBottomType roughBottomType)
Sets the type of rough bottom of the chute.
Definition: Chute.cc:641
BaseParticle::getRadius
Mdouble getRadius() const
Returns the particle's radius.
Definition: BaseParticle.h:348
BaseInteractable::setVelocity
void setVelocity(const Vec3D &velocity)
set the velocity of the BaseInteractable.
Definition: BaseInteractable.cc:350
Chute::setInflowParticleRadius
void setInflowParticleRadius(Mdouble inflowParticleRadius)
Sets the radius of the inflow particles to a single one (i.e. ensures a monodisperse inflow).
Definition: Chute.cc:775
VERBOSE
LL< Log::VERBOSE > VERBOSE
Verbose information.
Definition: Logger.cc:57
BaseParticle::setSpecies
void setSpecies(const ParticleSpecies *species)
Definition: BaseParticle.cc:804
LinearViscoelasticSpecies
Species< LinearViscoelasticNormalSpecies > LinearViscoelasticSpecies
Definition: LinearViscoelasticSpecies.h:33
SilbertPeriodic::set_study
void set_study()
Definition: GlasPeriodic.h:102
File::setName
void setName(const std::string &name)
Sets the file name, e.g. "Name.data".
Definition: File.cc:198
DPMBase::getTime
Mdouble getTime() const
Returns the current simulation time.
Definition: DPMBase.cc:805
Species
Contains material and contact force properties.
Definition: Species.h:35
DPMBase::speciesHandler
SpeciesHandler speciesHandler
A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc.
Definition: DPMBase.h:1385
helpers::round
Mdouble round(const Mdouble value, unsigned precision)
Definition: Helpers.cc:598
DPMBase::wallHandler
WallHandler wallHandler
An object of the class WallHandler. Contains pointers to all the walls created.
Definition: DPMBase.h:1405
BaseHandler::getNumberOfObjects
virtual unsigned int getNumberOfObjects() const
Gets the number of real Object in this BaseHandler. (i.e. no mpi or periodic particles)
Definition: BaseHandler.h:648
Chute::getInflowVelocity
Mdouble getInflowVelocity() const
Returns the average inflow velocity.
Definition: Chute.cc:927
Chute::getChuteLength
Mdouble getChuteLength() const
Returns the chute length (X-direction)
Definition: Chute.cc:996
DPMBase::setTimeMax
void setTimeMax(Mdouble newTMax)
Sets a new value for the maximum simulation duration.
Definition: DPMBase.cc:870
Chute::setChuteLength
virtual void setChuteLength(Mdouble chuteLength)
Sets the chute length (X-direction)
Definition: Chute.cc:986
Vec3D::Y
Mdouble Y
Definition: Vector.h:65
InfiniteWall
A infinite wall fills the half-space {point: (position_-point)*normal_<=0}.
Definition: InfiniteWall.h:48
Chute::setFixedParticleRadius
void setFixedParticleRadius(Mdouble fixedParticleRadius)
Sets the particle radius of the fixed particles which constitute the (rough) chute bottom.
Definition: Chute.cc:608
Chute::getFixedParticleRadius
Mdouble getFixedParticleRadius() const
Returns the particle radius of the fixed particles which constitute the (rough) chute bottom.
Definition: Chute.cc:626
constants::i
const std::complex< Mdouble > i
Definition: ExtendedMath.h:51
BaseWall::setSpecies
void setSpecies(const ParticleSpecies *species)
Defines the species of the current wall.
Definition: BaseWall.cc:171
DPMBase::getZMin
Mdouble getZMin() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin.
Definition: DPMBase.h:625
SilbertPeriodic::getNCreated
int getNCreated() const
Definition: flowRuleDiego_HeightAngle.cpp:251
helpers::getMaximumVelocity
MERCURY_DEPRECATED Mdouble getMaximumVelocity(Mdouble k, Mdouble disp, Mdouble radius, Mdouble mass)
Calculates the maximum relative velocity allowed for a normal collision of two particles of radius r ...
Definition: Helpers.cc:346
BaseHandler::getLastObject
T * getLastObject()
Gets a pointer to the last Object in this BaseHandler.
Definition: BaseHandler.h:634
SilbertPeriodic::add_flow_particles
void add_flow_particles()
Definition: flowRuleDiego_HeightAngle.cpp:165
BaseHandler::getObject
T * getObject(const unsigned int id)
Gets a pointer to the Object at the specified index in the BaseHandler.
Definition: BaseHandler.h:613
Mdouble
Chute::write
void write(std::ostream &os, bool writeAllParticles=true) const override
This function writes the Chute properties to an ostream, and adds the properties of ALL chute particl...
Definition: Chute.cc:206
DPMBase::eneFile
File eneFile
An instance of class File to handle in- and output into a .ene file.
Definition: DPMBase.h:1446
BaseParticle
Definition: BaseParticle.h:54
BaseInteractable::getInteractions
const std::vector< BaseInteraction * > & getInteractions() const
Returns a list of interactions which belong to this interactable.
Definition: BaseInteractable.h:277
BaseHandler::copyAndAddObject
std::enable_if<!std::is_pointer< U >::value, U * >::type copyAndAddObject(const U &object)
Creates a copy of a Object and adds it to the BaseHandler.
Definition: BaseHandler.h:379
SilbertPeriodic::nCreated_
int nCreated_
Definition: flowRuleDiego_HeightAngle.cpp:261
RNG::getRandomNumber
Mdouble getRandomNumber()
This is a random generating routine can be used for initial positions.
Definition: RNG.cc:142
DPMBase::checkAndDuplicatePeriodicParticles
void checkAndDuplicatePeriodicParticles()
For simulations using periodic boundaries, checks and adds particles when necessary into the particle...
Definition: DPMBase.cc:4865
SilbertPeriodic::baseSpecies
LinearViscoelasticMixedSpecies * baseSpecies
Definition: flowRuleDiego_HeightAngle.cpp:266
PeriodicBoundary
Defines a pair of periodic walls. Inherits from BaseBoundary.
Definition: PeriodicBoundary.h:41
MercuryBase::hGridActionsBeforeTimeLoop
void hGridActionsBeforeTimeLoop() override
This sets up the broad phase information, has to be done at this stage because it requires the partic...
Definition: MercuryBase.cc:94
DPMBase::getYMax
Mdouble getYMax() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax.
Definition: DPMBase.h:619
BaseHandler::clear
virtual void clear()
Empties the whole BaseHandler by removing all Objects and setting all other variables to 0.
Definition: BaseHandler.h:528
DPMBase::getZMax
Mdouble getZMax() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax.
Definition: DPMBase.h:631
PeriodicBoundary::set
void set(Vec3D normal, Mdouble distanceLeft, Mdouble distanceRight)
Defines a PeriodicBoundary by its normal and positions.
Definition: PeriodicBoundary.cc:84
mathsFunc::beta
Mdouble beta(Mdouble z, Mdouble w)
This is the beta function, returns the approximation based on cmath's implementation of ln(gamma)
Definition: ExtendedMath.cc:164
BaseParticle::isFixed
bool isFixed() const override
Is fixed Particle function. It returns whether a Particle is fixed or not, by checking its inverse Ma...
Definition: BaseParticle.h:93
ParticleHandler::removeObject
void removeObject(unsigned int index) override
Removes a BaseParticle from the ParticleHandler.
Definition: ParticleHandler.cc:390
Chute::getInflowHeight
Mdouble getInflowHeight() const
Returns the maximum inflow height (Z-direction)
Definition: Chute.cc:901
DPMBase::particleHandler
ParticleHandler particleHandler
An object of the class ParticleHandler, contains the pointers to all the particles created.
Definition: DPMBase.h:1395
Vec3D::Z
Mdouble Z
Definition: Vector.h:65
DPMBase::setSaveCount
void setSaveCount(unsigned int saveCount)
Sets File::saveCount_ for all files (ene, data, fstat, restart, stat)
Definition: DPMBase.cc:406
Chute::createBottom
virtual void createBottom()
Creates the chute bottom, which can be either flat or one of three flavours of rough.
Definition: Chute.cc:323
InfiniteWall::set
void set(Vec3D normal, Vec3D point)
Defines a standard wall, given an outward normal vector s.t. normal*x=normal*point for all x of the w...
Definition: InfiniteWall.cc:118
SilbertPeriodic::increaseNCreated
void increaseNCreated()
Definition: flowRuleDiego_HeightAngle.cpp:256
DPMBase::dataFile
File dataFile
An instance of class File to handle in- and output into a .data file.
Definition: DPMBase.h:1436
units::name
std::string name
Definition: MercuryProb.h:48
Chute::getChuteWidth
Mdouble getChuteWidth() const
Returns the chute width (Y-direction)
Definition: Chute.cc:976
DPMBase::getXMin
Mdouble getXMin() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin.
Definition: DPMBase.h:600
SilbertPeriodic::setSlidingFrictionCoefficientBottom
void setSlidingFrictionCoefficientBottom(Mdouble new_)
Definition: GlasPeriodic.h:86
DPMBase::interactionHandler
InteractionHandler interactionHandler
An object of the class InteractionHandler.
Definition: DPMBase.h:1425
InteractionHandler::removeObjectKeepingPeriodics
void removeObjectKeepingPeriodics(unsigned int id)
Removes interactions of periodic particles when the periodic particles get deleted (see DPMBase::remo...
Definition: InteractionHandler.cc:319
DPMBase::getTimeMax
Mdouble getTimeMax() const
Returns the maximum simulation duration.
Definition: DPMBase.cc:885
SilbertPeriodic::set_H
void set_H(Mdouble new_)
Definition: flowRuleDiego_HeightAngle.cpp:231